Варианты решений и оценка задач Муниципального этапа Всероссийской олимпиады школьников по

химии

2018-2019 учебный год 10 класс

Максимальный балл – 60 баллов

Косова О. Ю.

Задание 10.1 (максимум **15** баллов)

В медицинской практике для обезболивания применяют 40%-ный водный раствор новокаина. Открытие новокаина в начале XX века - не случайность, а результат интенсивного систематического поиска многих ученых. Препарат является одним из первых синтетически полученных анестетиков. Открытие новокаина ознаменовало начало новой эры в обезболивании. Трудно сказать, сколько миллионов пациентов в мире избавлено от боли при операциях, различных вмешательствах и инъекциях антибиотиков. До 40-х годов (а в нашей стране до 60-х) прошлого столетия новокаин был "золотым стандартом" местной анестезии, с которым сравнивали эффективность и токсичность всех местных анестетиков. И сегодня ещё новокаин в нашей стране остается препаратом выбора, как самый доступный и малотоксичный.

- 1) Определите формулу новокаина, если при горении его паров массой 27,25 г образуется 29,12 л (н.у.) углекислого газа,, 18 мл воды, 2,8 г азота и 2,24 л (н.у.) хлороводорода.
- 2) Напишите уравнение реакции полного сгорания новокаина.
- 3) Рассчитайте массовую долю углерода в 20 г 40%-ного раствора новокаина.

Критерии опенивания:

No	Содержание ответа	Баллы				
Π/Π	содержание ответа	Баллы				
1	Записана общая формула молекулы новокаина:	1 балл				
1	$C_xH_yN_zCl_aO_b$ (возможны другие обозначения индексов)					
2	Рассчитаны количества вещества и массы C, H, N, Cl и O:					
	$n(CO_2) = 29,12/22,4 = 1,3$ моль; $n(C) = 1,3$ моль; $m(C) = 1,3 \cdot 12 = 15,6$ г	6 баллов				
	$n(N_2) = 2.8/28 = 0.1$ моль; $n(N) = 0.2$ моль; $m(N) = 0.2 \cdot 14 = 2.8$ г					
	$n(N_2) = 2,6/26 = 0,1$ моль; $n(N) = 0,2$ моль; $n(N) = 0,2 + 14 = 2,6$ г $n(H_2O) = 18/18 = 1$ моль; $n(H) = 2$ моль;					
	$n(H_2O) = 16/16 = 1$ моль, $n(H) = 2$ моль, $n(HCl) = 2,24/22,4 = 0,1$ моль; $n(H) = 0,1$ моль; $n(Cl) = 0,1$ моль;					
	$n(H \text{ всего}) = 2 + 0.1 = 2.1 \text{ моль}; m(H \text{ всего}) = 2.1 \cdot 1 = 2.1 \text{ г}$					
	$m(Cl) = 0.1 \cdot 35.5 = 3.55 \text{ r}$ $m(Cl) = 0.1 \cdot 35.5 = 3.55 \text{ r}$					
	$m(C) + n(H BCCC) + m(N) + m(Cl) = 15.6 + 2.1 + 2.8 + 3.55 = 24.05 \Gamma$					
2	$m(O) = 27,25 - 24,05 = 3,2 \ r; n(O) = 3,2/16 = 0,2 \ моль$	1 6				
3	Рассчитано мольное соотношение атомов C, H, N, Cl и О в молекуле	1 балл				
	новокаина и определена его молекулярная формула:					
	x : y : z : a : b = 1,3 : 2,1 : 0,2 : 0,1 : 0,2 = 13 : 21 : 2 : 1 : 2					
	Молекулярная формула новокаина C ₁₃ H ₂₁ N ₂ ClO ₂	2.5				
4	Записано уравнение реакции горения новокаина:	2 балла				
	$C_{13}H_{21}N_2ClO_2 + 17O_2 = 13CO_2 + 10H_2O + N_2 + HCl$					
5	Рассчитана масса новокаина в 20 г 40%-ного раствора его:	1 балл				
	$m(C_{13}H_{21}N_2ClO_2) = 20 \cdot 0,4 = 8 \Gamma$					
6	Подсчитана молярная масса новокаина:	1 балл				
	$M(C_{13}H_{21}N_2ClO_2) = 272,5$ г/моль					
7	Рассчитана массовая доля атомов углерода в молекуле новокаина:	1 балл				
	ω (C) = 12 · 13/272, 5 = 0,5725, или 57,25 %					
8	Рассчитана масса атомов углерода в 8 г 40%-ного раствора новокаина:	1 балл				
	$m(C) = 8 \cdot 0,5725 = 4,58 \Gamma$					

9	Рассчитана массовая доля углерода в растворе:	1 балл
-	4,58/ 20 = 0,229, или 22, 9 % Итого	15
		баллов

Внимание! Задачи могут быть решены разными способами. Не следует снижать оценку, если задача решена оригинальным способом.

Косова О. Ю.

Задание 10.2 (максимум 15 баллов)

Железную окалину массой 10 г внесли в 36,5%-ный раствор соляной кислоты объёмом 76 мл (ρ = 1,19 г/мл), а затем добавили избыток металлического железа. Вычислите массовые доли веществ (в %) в полученном растворе.

Критерии оценивания:

№ п/п	Содержание ответа	Баллы			
1	Записаны уравнения химических реакций:	3 балла			
	$2Fe_3O_4 + 16HCl = 2FeCl_2 + 4FeCl_3 + 8H_2O$ (1)				
	232 г/моль 36,5 г/моль 127 г/моль 162,5 г/моль				
	$Fe + 2HCl = FeCl2 + H2 \uparrow $ $56 \text{ r/MOJIB} $ (2)				
	$Fe + 2FeCl_3 = 3FeCl_2 \tag{3}$				
2	Найдено количество вещества полученных солей в реакции (1):	2 балла			
2	$n (Fe_3O_4) = 10/232 = 0.043 \text{ моль}$	2 Odilia			
	$n (Fe3O_4) - 10/232 - 0,043 $ моль $n (FeCl_2 по уравнению 1) = n (Fe_3O_4) = 0,043 $ моль $n (FeCl_3) = 2n(Fe_3O_4) = 0,086 $ моль				
3	Найдено количество вещества хлороводорода в исходном	1 балл			
	растворе и вступившего в реакцию с железной окалиной:	1 000001			
	$m(p-pa HC1) = 76 \cdot 1.19 = 90.44 \Gamma$				
	$n \text{ (HCl)} = 90,44 \cdot 0,365/36,5 = 0,904 \text{ моль}$				
	n (HCl) = 30,11 = 0,303/30,3 = 0,304 Means $n (HCl, вступив. в реакцию) = 8n(Fe3O4) = 0,043 · 8 = 0,344 моль$				
4	Найдено количество вещества избытка НС1:	1 балл			
	n (HCl изб.) = 0,904 – 0,344 = 0,56 моль	1 000.01			
5	Расчёты по уравнению (2):	1 балл			
	$n(\text{Fe по ур. 2}) = \frac{1}{2} n(\text{HCl изб.}) = 0.56 : 2 = 0.28 моль$				
	$n (FeCl_2 по уравнению 2) = n (Fe) = 0.28 моль$				
6	Найдено количество вещества (FeCl ₂ по ур.3):	2 балла			
	$n(\text{Fe по yp. 3}) = 1/2n (\text{FeCl}_3) = 0.043 \text{ моль}$				
	$n (FeCl_2 по уравнению 3) = 3n(Fe) = 0.043 \cdot 3 = 0.129 моль$				
	n(Fe по yp. 2 и 3) = 0.28 + 0.043 = 0.323 моль				
7	Найдена общая масса FeCl ₂ :	2 балла			
	$n (FeCl_2 \text{ общая}) = 0.043 + 0.28 + 0.129 = 0.452 \text{ моль}$				
	$m(FeCl_2 \text{ общая}) = 0,452 \cdot 127 = 57,404 \Gamma$				
8	Рассчитана масса полученного раствора:	1 балл			
	$m(\text{получ. p-pa}) = m(\text{Fe}_3\text{O}_4) + m(\text{Fe}) + m(\text{p-pa HCl}) - m(\text{H}_2) =$				
	$10 + (0.323 \cdot 56) + 90.44 - 0.28 \cdot 2 = 117.968 \mathrm{r}$				
9	Рассчитаны массовые доли веществ в полученном растворе:	2 балла			
	ю́(FeCl ₂) = 57,404/117,968 = 0,4866, или 48,66%				
	$\dot{\omega}(H_2O) = 51,34\%$				
	Итого	15			
		баллов			

Внимание! Задача может быть решена разными способами. Не следует снижать оценку, если задача решена оригинальным способом.

Азиева Н. Э.

Задание 10.3 (максимум 15 баллов)

Углеводород X с массовой долей углерода 0,818 и плотностью по этилену 1,5714 используется для синтеза медицинского средства - батилол, который применяют для профилактики и лечения лучевой болезни, ускоряющее восстановление числа лейкоцитов и гемоглобина.

- 1) Определите молекулярную формулу исходного вещества X, назовите вещество
 - 2) Синтезируйте батилол по следующей схеме:

$$X \xrightarrow{Cl_2, csem} A \xrightarrow{KOH, cnupm.} B \xrightarrow{Cl_2, 450^0 C} C \xrightarrow{NaOH, H_2O} D \xrightarrow{HCIO} E (E_1) \xrightarrow{NaOC_{18}H_{37}}$$

$$\xrightarrow{NaOC_{18}H_{37}} C_{21}H_{44}O_3$$

3) Назовите вещества $X, A, B, C, Д, E(E_1)$ и батилол по систематической номенклатуре.

Критерии оценивания:

	оии оценивания.	Г
<u>№</u>	Содержание ответа	Баллы
	Общая формула углеводорода: СхНу	
1.	Рассчитана молярная масса искомого вещества:	2 балла
	$M(CxHy) = 28 \cdot 1,5714 = 44 \ \Gamma/моль$	2 Gaina
	x = 3, y = 8 Mr = 44	
	Определена молекулярная формула вещества:	
	$x = 0.818 \cdot 44/12 = 3$	2.5
2.	$y = 0.182 \cdot 44 = 8$	2 балла
	Молекулярная формула: С ₃ Н ₈ - пропан	
	свет	
3.	$CH_3 - CH_2 - CH_3 + Cl_2 \longrightarrow CH_3 - CH - CH_3 + HCl$	
		1,5 балла
	Ċl	
	2-хлорпропан	
	$CH_3 - CH - CH_3 + KOH \xrightarrow{cnupm.p-p} CH_2 = CH - CH_3 + KCl + H_2O$	1.5.5
4.	пропен	1,5 балла
	Ċl	
	$CH_2=CH-CH_3+Cl_2 \xrightarrow{450^0C} CH_2=CH-CH_2+HCl$	
5.		1,5 балла
<i>J</i> .	Ċl	1,5 0431314
	3-хлорпропен-1	
	(аллилхлорид)	
	$CH_2=CH-CH_2 + NaOH \xrightarrow{H_2O} CH_2=CH-CH_2 + NaCl$	
6.		1,5 балла
	C1 OH	1,5 Ualilla
	2-пропенол	
	(аллиловый спирт)	

7.	$CH_2 = CH - CH_2 + HClO \longrightarrow CH_2 - CH - CH_2;$ $CH_2 - CH - CH_2$ $ $ $ $ $ $ $ $ $ $ $ $ OH Cl OH Cl OH OH 2 -хлорпропандиол-1,3 3 -хлорпропандиол-1,2	2 балла	
8.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 балла	
9.	$C_{21}H_{44}O_3 - 3$ -(октадецилокси) -1,2 – пропандиол		
	Итого	15 баллов	

Гиревая Х. Я.

Задание 10.4 (максимум **15** баллов)

Определите строение углеводорода A, если известно, что при полном сжигании 2,46 л (27^{0} C, P=101,3 кПа) его образуется 5.4 г воды и выделяется 8,96 л (0^{0} C, P=101,3 кПа.) оксида углерода (IV). При добавлении воды в присутствии сульфата ртути образуется органический продукт Б, плотность паров которого по гелию составляет 18, что на 25% выше плотности паров A.

При действии на вещество A избытка аммиачного раствора оксида серебра (I) получается нерастворимое соединение D. Массовая доля углерода в соединении A больше в 2,98 раза, чем в D.

- 1) Произведите вычисления, необходимые для установления молекулярной формулы органического вещества A, и запишите молекулярную формулу исходного органического вещества.
 - 2) Приведите все возможные изомеры соединения А и назовите их.
 - 3) Проведите расчеты, необходимые для подтверждения состава вещества D.
- 4) Напишите уравнения реакций взаимодействия соединения А с водой и аммиачным раствором оксида серебра (I).

Критерии оценивания

1	Уравнение сгорания углеводорода:	2 балла
	$C_x Hy + (2x+0.5y)/2 O_2 \longrightarrow xCO_2 + 0.5yH_2O$	
	n (A)= (2,46 · 101,3)/8,31 х 300=0,1 моль	
	$n (H_2O) = 5,4/18 = 0,3 моль$	
	$n (H) = 2n (H_2O) = 0.6$ моль	
	$n(C)=n(CO_2)=8,96/22,4=0,4$ моль	
	При сжигании 0.1 моль углеводорода получается 0,3 моль Н ₂ О и 0,4	
	моль CO_2 , т.е. $x = 4$, $y = 6$. Следовательно, формула углеводорода C_4H_6 .	
	$M(E) = 18 \cdot 4 = 72 \Gamma/MOJIE$.	
	Плотность паров Dвозд.(A) = $(18 - 18 \cdot 0.25) = 13.5$	
	$M(A) = 13.5 \cdot 4=54$ г/моль Следовательно, эмпирическая формула	
	C_4H_6 .	

2	Изо	Изомеры			1
	1	CH≡ C-CH ₂ -CH ₃	Бутин-1	баллу	за
	2	CH ₃ -C ≡ C-CH ₃	Бутин-2	изомер	И
	3	CH ₂ =CH-CH=CH ₂	Бутадиен-1,3	его	
	4	CH ₂ =C=CH-CH ₃	Бутадиен-1,2	названи	ie.
	5		Циклобутен	Всего	8
	6	\triangleright	1-метилциклопропен-1, неустойчив	баллов	
		CH ₃			
	7	\downarrow CH ₃	3-метилциклопропен-1,		
			неустойчив		
	8	CH ₂	Метиленциклопропан,		
		V	неустойчив		
5		Находим М продукта Б, получающегося при действии воды: М (Б) = 24 · 4 = 96 г/моль Она отличается от М (А) на 18 единиц, что		3 балла	
	\	соответствует одной молекуле воды. Идет присоединение молекулы			
	воді	воды по тройной связи в присутствии сульфата ртути.			
		Hg ²⁺			
	СН	$CH \equiv C-CH_2-CH_3 + H_2O \rightarrow CH_3-C(O)-CH_2-CH_3$			
		Hg ²⁺			
	CH ₃	$-C \equiv C-CH_3 + H_2O \rightarrow CH_1$	₃ -C(O)-CH ₂ -CH ₃		
6	_	В реакцию с аммиачным раствором оксида серебра (I) вступают терминальные алкины		2 балла	
		$CH \equiv C-CH_2-CH_3 + Ag(NH_3)_2OH \longrightarrow AgC \equiv C-CH_2-CH_3 + 2NH_3 + H_2O$			
		идет замещение атома водорода при тройной связи на серебро. При			
		этом сильно увеличивается молярная масса продукта и снижается			
		массовая доля углерода в веществе. Массовая доля углерода в соединении А			
	II .	$\dot{\omega}_1$ (C) = 12 · 4 · 100% / 54 = 88,89%.			
	- (Массовая доля углерода в соединении D			
	II .	C) = 88,89 / 2,98 = 29,81%			
			Итого	15	
				баллов	

Внимание! Задачи могут быть решены разными способами. Не следует снижать оценку, если задачи решены оригинальным способом.