LXI МОСКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ2004-2005 уч. год 9 класс

ЗАДАНИЯ

- 1. Выберите вещества, реагирующие с оксидом кальция:
- а) ВаО; б) H_2CrO_4 ; в) SO_2 ; г) Al_2O_3 ; д) NaOH; е) $Sr(OH)_2$; ж) C Если реакция возможна, напишите ее уравнение и укажите условия.
- 2. Напишите уравнения реакций, с помощью которых можно осуществить цепочку превращений:

графит →углекислый газ →гидрокарбонат кальция →карбонат кальция →углекислый газ →сажа Укажите условия проведения реакций.

- 3. Пользуясь периодической таблицей, сравните свойства элементов № 34 и № 42:
- а) У какого из этих элементов высшая кислородная кислота может быть более сильной и почему?
- б) Чем и почему отличаются свойства элементов № 34 и № 42 в виде простых веществ? (приведите примеры не более трех различающихся свойств).
- **4.** Кальций, массой 2,0 г, сожгли в избытке кислорода, продукт сгорания поместили в воду и пропускали в полученную взвесь оксид серы (IV) до прекращения поглощения газа. Определите состав и массу образовавшейся соли. Какой объем оксида серы(IV) (при н.у.) может быть получен из данной соли при обработке ее серной кислотой?
- **5.** В лаборатории есть смесь карбонатов стронция и бария. Как <u>химическим</u> способом определить массовую долю каждого из карбонатов в смеси, если есть широкий выбор химической посуды, весы, но из реактивов имеется только 20%-ная соляная кислота? Опишите ход анализа и вычисления.
- **6.** К 50 г 34 %-ного раствора пероксида водорода добавили оксид марганца(IV) и собрали весь выделившийся газ. Определите массу образовавшейся жидкости. Какой объем пропана C_3H_8 (н.у.) может полностью сгореть в выделившемся газе?

РЕКОМЕНДАЦИИ К РЕШЕНИЮ

- **1.** Ответ: б), в), г), ж); равновесие возможно в д), е)
- б) $H_2CrO_4 + CaO = CaCrO_4 + H_2O$ реакция с раствором хромовой кислоты

в) $SO_2 + CaO = CaSO_3$ сернистый газ с твердым оксидом

г) $Al_2O_3 + CaO = Ca(AlO_2)_2$ твердые вещества при нагревании

д) 2 NaOH + CaO \leftrightarrow Na₂O + Ca(OH)₂ при нагревании твердых веществ, установится равновесие

e) $Sr(OH)_2 + CaO \leftrightarrow SrO + Ca(OH)_2$ при нагревании твердых веществ, установится равновесие

ж) $CaO + 3C = CaC_2 + CO$ при высокой температуре

2.
$$C + O_2 = CO_2$$

 $2 \text{ CO}_2 + \text{Ca}(\text{OH})_2 = \text{Ca}(\text{HCO}_3)_2$ при избытке CO_2

 $Ca(HCO_3)_2 = CaCO_3 + CO_2 + H_2O$ при нагревании раствора

 $CaCO_3 = CO_2 + CaO$ реакция при прокаливании

 $CO_2 + 2 Mg = 2 MgO + C$ горение магния в атмосфере CO_2

3. а) Высшая кислородная кислота селена (№ 34) H_2SeO_4 будет сильнее, чем аналогичная кислота молибдена (№ 42) H_2MoO_4 .

В селеновой кислоте электроны сильнее оттягиваются от атомов водорода, освобождая протоны, потому что атом селена меньше по размерам, более электроотрицательный.

б) Селен - неметалл, а молибден - металл

У молибдена больше электропроводность, блеск, ковкость + химические свойства

9-4.
$$Ca + 1/2 O_2 = CaO$$
; $CaO + H_2O = Ca(OH)_2$

 $Ca(OH)_2 + SO_2 = CaSO_3 + H_2O$;

 $CaSO_3 + SO_2 + H_2O = Ca(HSO_3)_2$ реакция прекращается после превращения всего гидроксида в кислую соль.

2.0 г кальция соответствуют 2/40 = 0.05 (моль).

По цепочке: Ca \rightarrow Ca(OH)₂ \rightarrow CaSO₃ \rightarrow Ca(HSO₃)₂ получается 0,05 моль кислой соли или $202\times0,05=10,1$ (г)

$$Ca(HSO_3)_2 + H_2SO_4 = CaSO_4 + 2 SO_2 + 2 H_2O$$

Объем сернистого газа (н.у.): $22,4\times0,05\times2=2,24$ л

Ответ: 10,1 г Ca(HSO₃)₂; 2,24 л SO₂

5. Взвесить смесь, и навеску растворить в соляной кислоте, измеряя объем выделившегося газа.

Измеренный объем газа привести к нормальным условиям.

Далее - пример расчетов:

X моль $SrCO_3$ и Y моль $BaCO_3$, масса навески m г, объем CO_2 при н.у. V л

148X + 197Y = m

$$X + Y = V/22,4$$

Находим количества $(X \cup Y)$, затем массы и массовые доли

6. 2
$$H_2O_2 = 2 H_2O + O_2 (MnO_2 - катализатор)$$

В растворе содержалось $50\times0,34=17$ г пероксида водорода или 0,5 моль. Из него выделяется (по уравнению реакции) 0,25 моль кислорода или $32\times0,25=8$ (г). Масса образовавшегося раствора, а на самом деле воды 50-8=42 г.

$$C_3H_8 + 5 O_2 = 3 CO_2 + 4 H_2 O$$

Объем пропана при полном сгорании в 5 раз меньше объема кислорода: 0.25/5 = 0.05 моль или $22.4 \times 0.05 = 1.12$ (π)

Ответ: 42 г; 1,12 л