Яценко А. В.

Лекции по общей химии

Комплексные соединения

Для студентов второго курса физического факультета

Происхождение терминов "комплексный" и "координационный"	2
Некоторые определения. Изомерия	
Химическая связь в σ-комплексах переходных металлов. Спектрохимичес	кий ряд. 4
Устойчивость комплексов	7
Хелаты, комплексоны и макроциклические лиганды	9
π-Комплексы	13
Комплексы с лигандами π-акцепторного типа	15
Кластеры	16
Реакции комплексных соединений с изменением степени окисления центр	ального
атома	18
Реакции комплексных соединений: замещение лигандов	19
Реакции лигандов в комплексных соединенях и темплатный синтез	22
Комплексные соединения в катализе	24
Комплексные соединения в биологических системах	25

Происхождение терминов "комплексный" и "координационный"

Словосочетание "комплексное соединение" возникло в конце XIX века, когда, собственно, и закладывались основы современной химии. В предыдущих темах (строение молекул, растворы) говорилось, что в это же время Фишер синтезировал углеводы, а Аррениус изучал растворы электролитов. Самое главное, что тогда уже сложилась почти современная система химических представлений. Поэтому когда современный химик читает научную статью того времени, ему в основном все понятно, и ему понятна логика, которой руководствовался автор. А вот если читать труды каких-нибудь алхимиков, то нужен специальный перевод понятий, причем историки науки часто спорят, правильно ли мы понимаем алхимические тексты.

Итак, в конце XIX века химики выстроили <u>учение о валентности</u>, то есть о способности атомов образовывать определенное число связей. Какова же валентность атомов металлов в их солях? Допустим, мы растворили цинк в соляной кислоте и упарили получившийся раствор.

$$Zn + 2 HCl = \underline{ZnCl_2} + H_2 \uparrow$$

Получился хлорид цинка, $ZnCl_2$. Валентность хлора равна 1, следовательно, валентность цинка в такой молекуле должна быть равна 2 и она должна быть построена так : Cl-Zn-Cl.

Или же мы нагреваем железо в атмосфере хлора.

$$2 \text{ Fe} + 3 \text{ Cl}_2 = 2 \text{ FeCl}_3$$

Получается FeCl₃, в молекуле которого железо трехвалентно. Химикам того времени было понятно, как построены молекулы этих веществ.

Однако обнаружилось, что если к раствору одного хорошо понятного вещества — соли металла — добавить раствор другого хорошо понятного вещества — например, аммиака, то эти вещества могут соединиться и образуется что-то новое и малопонятное. Например, если к розовому раствору хлорида кобальта добавить раствор соляной кислоты, то цвет раствора изменится на синий, а если туда еще добавить хлорид натрия, то при упаривании можно получить вещество состава (определять состав тогда уже умели довольно точно) Na_2CoCl_4 . Это вещество химикам того времени было непонятно — оно не вписывалось в учение о валентности.

DEMO: CoCl₂ + HCl (изб.) + NaCl \rightarrow Na₂CoCl₄

Можно было записать эту формулу в виде совокупности двух молекул NaCl и одной молекулы $CoCl_2$ ($2NaCl \cdot CoCl_2$). Но такая запись многих не удовлетворяла, так как всем было ясно, что в новом веществе нет молекул NaCl и $CoCl_2$. Можно было записать формулу так: $Na_2[CoCl_4]$, с образовани-

ем сложного аниона. Однако тогда становилось непонятно, а какова здесь валентность кобальта? 4? Такая валентность была неизвестна.

Поэтому был предложен такой выход: соединения, в которых атом металла превышает свою обычную валентность, выделить в особый класс и именовать их комплексными. Далее, число связей, которые центральный атом образует со своими соседями, именовать не валентностью, а координационным числом. А самих этих соседей называть лигандами. И наконец, связь, образующуюся между центральным атомом и лигандом, стали называть координационной связью — в отличие от обычной ковалентной. Так химикам удалось примирить теорию и реальность.

С современной точки зрения валентность - устаревшее понятие, и никакой принципиальной разницы между комплексными и некомплексными (симплексными) соединениями нет. В самом деле, ZnCl₂ существует в виде молекул такого строения только в газовой фазе. В кристалле отдельных молекул нет, и каждый атом Zn окружен 4 атомами Cl, а в растворе происходит электролитическая диссоциация, и ионы сольватируются, причем каждый ион цинка непосредственно окружен 6 молекулами воды, а каждый ион хлора — 8. Таким образом, превышение формальной валентности — это скорее правило, чем исключение. Однако термин комплексные или, что то же самое, координационные соединения сохранился, и существуют, например, такие журналы, как "Координационная химия" и "Coordination Chemistry Reviews", хотя граница между комплексными и некомплексными соединениями не всегда ясна и отчетлива. Например, весьма условна разница между комплексными и металлорганическими соединениями (то есть соединениями, содержащими связи металл-углерод).

Итак, понятия комплексный и координационный — почти точные синонимы, но некоторая филологическая разница все-таки есть. Например, химик никогда не скажет "комплексная связь" — только "координационная связь". Никогда не скажет "координационный ион" — только "комплексный ион". Понять эту разницу почти невозможно, а можно только запомнить.

Некоторые определения. Изомерия

Понятия <u>лиганд</u> и <u>координационное число</u> уже были введены. Ион (иногда нейтральный атом), находящийся в центре комплексной частицы, называют **ионом (атомом)-комплексообразователем**. Саму комплексную частицу принято записывать в квадратных скобках. Комплексная частица может быть нейтральной, может быть положительно или отрицательно заряженной. В этом случае говорят о комплексном катионе и комплексном анионе. Может быть и так, что и катион, и анион — оба являются комплексными.

$$[ML_n], [ML_n]^{m+}X_m^-, K_m^+[ML_n]^{m-}, [ML_n][M'L'_m]$$
 (М – металл-комплексообразователь, L – лиганд)

<u>Изомеры</u>, как вы помните, это вещества одинакового состава, но имеющие разное строение. У комплексных соединений существуют особые виды изомерии. Изомерия комплексных соединений может быть вызвана тем, что

часть анионов может входить в состав комплекса, а часть — выполнять роль противоионов — это ионизационная изомерия.

$$[Co(NH_3)_4Cl_2]NO_2$$
 и $[Co(NH_3)_4Cl(NO_2)]Cl$

Частный случай ионизационной изомерии – гидратная изомерия

$$[Cr(H_2O)_6]Cl_3$$
 (фиолетовый) и $[Cr(H_2O)_5Cl]Cl_2$ (зеленый)

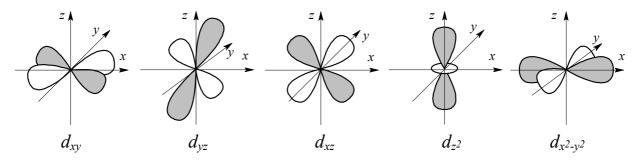
Далее, сложный лиганд может по-разному присоединяться к комплексообразователю. Например, нитрит-ион может присоединяться к атому кобальта либо через атом азота, либо через атом кислорода. Это пример солевой изомерии.

$$[Co(NH_3)_5NO_2]^{2+}$$
 и $[Co(NH_3)_5ONO]^{2+}$

Пример **координационной изомерии** – в первом случае атом платины входит в состав катиона, во втором – в состав аниона.

$$[Pt(NH_3)_4][CuCl_4]$$
 и $[Cu(NH_3)_4][PtCl_4]$

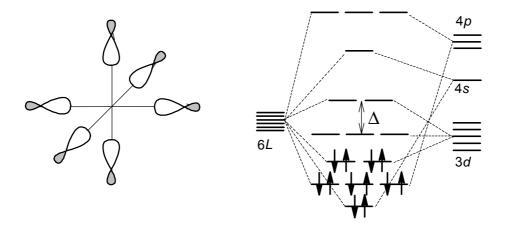
Наконец, **геометрическая изомерия**. Введем два важных обозначения изомеров - **цис** и **транс**. Комплекс имеет транс-строение, если 2 одинаковых лиганда находятся напротив друг друга, и цис-строение, если они расположены по соседству.


Химическая связь в σ-комплексах переходных металлов. Спектрохимический ряд

Какие же силы связывают лиганды и ионы-комплексообразователи? Мы уже обсуждали сольватацию ионов при электролитической диссоциации и можем поэтому предположить, что тут важную роль играют электростатические вза-имодействия. По-видимому, кристаллогидраты солей щелочных и щелочно-земельных металлов действительно образуются в основном по электростатическому механизму: молекула воды представляет из себя диполь (µ=1,45 Д), и энергии ион-дипольного взаимодействия может быть достаточно для того, чтобы связать молекулы воды с катионами. По мере увеличения размера катиона разрушение кристаллогидрата происходит легче: сульфат лития теряет воду при температуре почти на 200° выше, чем сульфат натрия, перхлорат магния – тоже при более высокой температуре, чем хлорид кальция. Все это подтверждает идею об электростатической природе взаимодействий.

$$\begin{array}{c} 20^{\circ} & 93^{\circ} \\ \text{LiCl} \cdot 2\text{H}_{2}\text{O} \longrightarrow \text{LiCl} \cdot \text{H}_{2}\text{O} \longrightarrow \text{LiCl} \\ \text{Li}_{2}\text{SO}_{4} \cdot \text{H}_{2}\text{O} - \text{T. разл. } 233^{\circ}\text{C}; \quad \text{Na}_{2}\text{SO}_{4} \cdot 10\text{H}_{2}\text{O} \; (\Gamma \text{лауберова соль}) - \text{T. разл. } 32^{\circ}\text{C} \\ \text{Mg}(\text{ClO}_{4})_{2} \cdot 6\text{H}_{2}\text{O} \longrightarrow \text{Mg}(\text{ClO}_{4})_{2} \cdot 4\text{H}_{2}\text{O} \longrightarrow \text{Mg}(\text{ClO}_{4})_{2} \cdot 2\text{H}_{2}\text{O} \longrightarrow \text{Mg}(\text{ClO}_{4})_{2} \\ \text{ангидрон} \\ \text{CaCl}_{2} \cdot 6\text{H}_{2}\text{O} \longrightarrow \text{CaCl}_{2} \cdot 4\text{H}_{2}\text{O} \longrightarrow \text{CaCl}_{2} \cdot 2\text{H}_{2}\text{O} \longrightarrow \text{CaCl}_{2} \cdot \text{H}_{2}\text{O} \longrightarrow \text{CaCl}_{2} \end{array}$$

CaSO₄·2H₂O (гипс) Т. разл. 110°C


Однако комплексные соединения переходных металлов, то есть металлов с незаполненными d-оболочками, намного более стабильны. Это означает, что связи металл-лиганд в них являются хотя бы отчасти ковалентными. Современная теория химической связи построена на методе молекулярных орбиталей. Посмотрим, как она может объяснить электронное строение комплексов в случае октаэдрического комплекса, когда центральный атом окружен 6 лигандами. Этот случай довольно типичный – координационное число 6 очень распространено. Чуть менее распространенным является координационное число 4. Ему соответствует тетраэдрическое или квадратное строение комплексной частицы. Сначала рассмотрим комплексообразование с участием лигандов отипа – это молекулы воды, аммиака, галогенид-анионы и прочие частицы, которые имеют неподеленную электронную пару.

У иона переходного металла есть s и p-орбитали. Они перекрываются с σ -орбиталями лигандов, и при этом образуются связывающие и разрыхляющие орбитали. Далее, у иона переходного металла есть 5 d-орбиталей. Лепестки 2 из них направлены вдоль координатных направлений — это d_{z^2} и $d_{x^2-y^2}$. Остальные 3 орбитали — d_{xy} , d_{xz} и d_{yz} — ориентированы в бисекториальных направлениях. В октаэдрических комплексах лиганды подходят к центральному атому вдоль координатных осей, поэтому орбитали d_{z^2} и $d_{x^2-y^2}$ участвуют в образовании связей, при этом образуются две связывающие и две разрыхляющие орбитали, а d_{xy} , d_{xz} и d_{yz} — не участвуют и остаются несвязывающими.

Итак, 6 электронных пар лигандов всегда заполняют 6 нижних молекулярных орбиталей. Они обозначены на рисунке как заполненные, не представляют для нас интереса и не будут обсуждаться в дальнейшем. Почти все свойства комплексов определяются характером заполнения пяти МО (три

несвязывающих и две разрыхляющих) электронами комплексообразователя.

Порядок заполнения определяется, с одной стороны, правилом Хунда, а с другой — расстоянием между орбиталями на энергетической диаграмме (величиной расщепления) Δ . Например, в октаэдрическом комплексе с конфигурацией центрального иона d^1 , d^2 или d^3 заполняются три нижние орбитали. Если величина расщепления больше, чем энергия спин-спаривания, то четвертый, пятый и шестой электроны тоже разместятся на несвязывающих орбиталях, а заполнение двух верхних орбиталей начнется только с конфигурации d^7 . Если же величина расщепления невелика, то сначала каждая из пяти орбиталей заполнится одним электроном, а уже потом начнется их спаривание.

Электронные конфигурации ионов переходных металлов:

	0	+1	+2	+3	+4
Ti	$3d^24s^2$		d^2	d^1	\mathbf{d}^0
V	$3d^34s^2$		d^3	d^2 d^3	\mathbf{d}^{1}
Cr	$3d^54s^1$		d^4	d^3	
Mn	$ \begin{array}{c} 3d^34s^2 \\ 3d^54s^1 \\ 3d^54s^2 \end{array} $		d^5		
Fe	$13d^{\circ}4s^{2}$		\mathbf{d}^{6}	$ d^5 $ $ d^6 $	
	$3d^74s^2$		$ \begin{array}{c} d^{2} \\ d^{3} \\ d^{4} \\ d^{5} \\ d^{6} \\ d^{7} \\ d^{8} \end{array} $	\mathbf{d}^{6}	
Co Ni	$3d^84s^2$		\mathbf{d}^{8}		
Cu	$3d^{10}4s^1$	d^{10}	\mathbf{d}^9		

Энергия спин-спаривания индивидуальна для каждого иона и незначительно зависит от природы лигандов. Например, для ионов Fe^{2+} эта величина составляет 17600 сm^{-1} , а для ионов Fe^{3+} - 30000 сm^{-1} . Величина расщепления Δ , наоборот, в основном определяется природой лигандов. По своей способности вызывать расщепление лиганды образуют ряд, называемый **спектрохимическим**. Ряд этот приблизительный, и может немного меняться в зависимости от иона-комплексообразователя. Лиганды, стоящие в начале ряда, называются лигандами **слабого поля** и вызывают наименьшее расщепление, а лиганды, стоящие в конце ряда, называются лигандами **сильного поля**. Граница между ними проходит примерно по аммиаку. Аммиак в разных книгах относят либо к лигандам сильного поля, либо к лигандам среднего поля.

$$I^- < Br^- < Cl^- < F^- < OH^- < H_2O < NCS^- < пиридин $\approx NH_3 < NO_2^- << CN^- < CO$$$

Вернемся к комплексам ионов с конфигурацией d⁶. Если комплекс образован лигандами сильного поля, суммарный спин комплекса будет равен 0. Если же комплекс образован лигандами слабого поля, то он содержит 4 неспаренных электрона и его спин равен 2. В первом случае комплекс является диамагнитным и называется низкоспиновым. Во втором – комплекс парамагнитный и высокоспиновый. Следовательно, магнитные измерения позволяют определять электронную структуру комплекса, и наоборот, зная место лиганда в спектрохимическом ряду, можно предсказать магнитные свойства комплекса.

Электронную структуру тетраэдрических и квадратных комплексов тоже можно описать методом МО. В тетраэдрических комплексах величина расщепления примерно в 2 раза меньше, чем в аналогичных по составу октаэдрических, поэтому тетраэдрические комплексы всегда высокоспиновые.

Спектры поглощения комплексных соединений в видимой области возникают в результате переноса электрона с верхней занятой на нижнюю вакантную MO, то есть длина волны поглощения тоже определяется величиной Δ .

<u>DEMO: комплексы кобальта с разными лигандами.</u>

Например, комплексы кобальта образуют ряд цветов – от синего (тетраэдрический хлоридный комплекс) до морковно-оранжевого (нитритный комплекс).

Устойчивость комплексов

В растворах, содержащих ионы-комплексообразователи и молекулы (или ионы) лиганда, устанавливается ступенчатое равновесие. Для каждой стадии можно записать константу равновесия, тогда как суммарная константа — это произведение всех ступенчатых констант. Константы равновесия реакций комплексообразования называют константами образования комплекса. В литературе часто используют и обратную величину — так называемую константу нестойкости, которая является константой равновесия реакции распада комплексной частицы.

$$A + B \longrightarrow C$$
, $K_{o\delta p} = \frac{[C]}{[A][B]}$

В качестве примера рассмотрим образование аммиачного комплекса Cu^{2+} :

$$[Cu(NH_3)_3]^{2+}+NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+}$$
 $K_4 = 1.4 \cdot 10^2$

Обратите внимание, что первая ступенчатая константа является наибольшей. Суммарно:

$$Cu^{2+}$$
 +4NH₃ \rightleftharpoons $[Cu(NH_3)_4]^{2+}$ $K_{oбp} = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}] \cdot [NH_3]^4}$ $K_{oбp} = K_1 \cdot K_2 \cdot K_3 \cdot K_4 = 4.7 \cdot 10^{12} = e^{\frac{\Delta H^0 - T\Delta S^0}{RT}}$ Из величины константы можно определить энергин

Из величины константы можно определить энергию Гиббса реакции комплексообразования — это -72 кДж/моль, то есть на каждую из 4 координационных связей приходится по 18 кДж/моль. Это существенно меньше, чем у типичной ковалентной связи — там изменение свободной энергии составляет порядка 100 и более кДж/моль, но намного больше энергии Ван-дер-Ваальсовых взаимодействий. Существуют однако комплексы с намного более прочными координационными связями, практически не уступающими ковалентным связям.

Какова же термодинамика комплексообразования? При комплексообразовании образуется новая связь — связь металл-лиганд — поэтому всегда происходит уменьшение энтальпии. Глядя на суммарное уравнение, можно предположить, что раз в системе уменьшается число частиц, то энтропия должна сильно уменьшиться. Однако это не так. Дело в том, что это уравнение сокращенное. Мы с вами обсуждали в предыдущей теме, что "голых" ионов в растворах, а в особенности — в водных растворах, не существует — все они сольватированы, то есть связаны с молекулами растворителя. Поэтому правильнее было бы записать реакцию комплексообразования с участием молекул воды. Из приводимого ниже уравнения видно, что на самом деле в данном случае число частиц даже увеличивается.

$$[Cu(H_2O)_6]^{2+} + 4NH_3 \iff [Cu(NH_3)_4]^{2+} + 6H_2O$$

При образовании шестикоординационного комплекса на каждый присоединенный лиганд приходится одна высвободившаяся молекула воды, поэтому изменение энтропии обычно невелико.

Благодаря образованию комплексов можно растворять малорастворимые соединения: благодаря образованию комплекса произведение растворимости не достигается. Чем меньше растворимость вещества, тем более прочный комплекс должен использоваться для его растворения.

DEMO: соли и комплексы серебра.

$$Ag^+ + 2NH_3 = [Ag(NH_3)_2]^+ \qquad K_{\text{обр}} = 1.5 \cdot 10^7 \text{ } \text{л}^2/\text{моль}^2$$
 Этот осадок растворяется в избытке аммиака.

$$Ag^+ + I^- = AgI \downarrow$$
 $\Pi P = 1.5 \cdot 10^{-16}, p-мость = 1.2 \cdot 10^{-8} моль/л$

ПР AgI существенно меньше, чем AgCl, поэтому добавление в раствор комплекса иодид-ионов снова приводит к выпадению осадка.

$$Ag^{+} + 2S_{2}O_{3}^{2-}$$
 [$Ag(S_{2}O_{3})_{2}$]³⁻ $K_{oбp} = 1.0 \cdot 10^{13} \text{ л}^{2}/\text{моль}^{2}$

Однако если использовать более сильный комплексообразователь – тиосульфат-ион – то осадок AgI тоже можно растворить.

Помните, что такое произведение растворимости? Это константа равновесия процесса растворения малорастворимого электролита, то есть произведение концентраций ионов в степенях стехиометрических коэффициентов. Для AgCl — это просто произведение концентраций ионов серебра и хлора, а для сульфида серебра — это произведение концентрации сульфид-ионов на квадрат концентрации ионов серебра.

Хелаты, комплексоны и макроциклические лиганды

Лиганды, которые могут образовывать сразу несколько координационных связей, называют **полидентатными**, то есть многозубыми. Простейший пример <u>бидентатного лиганда</u> — этилендиамин (en), в котором два атома азота связаны этиленовым мостиком.

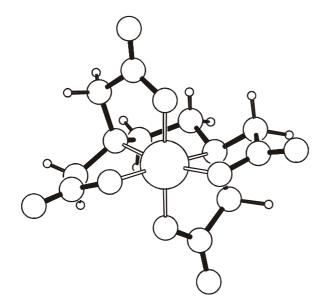
При комплексообразовании такой лиганд заменяет две молекулы аммиака.

Cu²⁺ + 2en = [Cu(en)₂]²⁺

$$K_1 = 3.6 \cdot 10^{10}, K_2 = 1.1 \cdot 10^9, K_{oбp} = 4.0 \cdot 10^{19}$$

При этим из трех частиц — иона меди в гидратной оболочке и двух молекул этилендиамина — образуется 5 частиц — комплексная молекула и 6 молекул воды, то есть число энтропия системы значительно возрастает. По сравнению с аммиачным комплексом, энтальпия реакции комплексообразования почти не изменяется, так как не изменяется природа донорных центров. Однако благодаря энтропийному слагаемому ΔG реакции возрастает примерно в полтора раза и комплекс оказывается намного более прочным.

Повышение устойчивости комплексов при замене монодентатных лигандов на аналогичные по своей химической природе полидентатные лиганды называется **хелатным эффектом**, то есть эффектом клешни. Комплексы с такими лигандами называют хелатными комплексами. Ниже изображен в разных проекциях хелатный комплекс трехвалентного кобальта с этилендиамином. Он имеет структуру немного искаженного октаэдра: углы N-Co-N в хелатных циклах немного меньше 90° (84°), а между циклами — немного больше (92-93°).

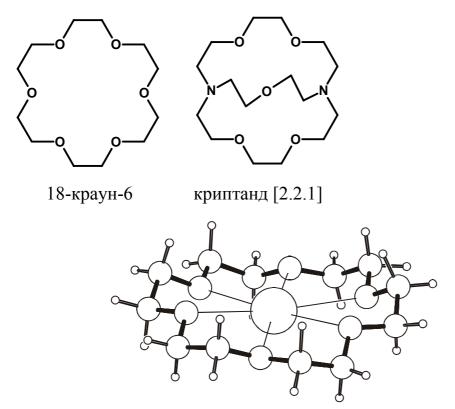

На самом деле, во многих случаях хелатный эффект обусловлен не только энтропийным, но и энтальпийным слагаемым. Энтальпийный выигрыш достигается благодаря тому, что при образовании координационной сферы из монодентатных лигандов им при сближении приходится преодолевать силы отталкивания, а в <u>полидентатном</u> лиганде донорные центры уже находятся на подходящем расстоянии и на их сближение тратить энергию не приходится.

Ясно, что чем выше дентатность лиганда, тем сильнее сказывается хелатный эффект и тем выше устойчивость комплексов. Разработано целое семейство полидентатных лигандов, называемых комплексонами. Помимо донорных центров, таких как атомы азота, молекулы комплексонов содержат кислотные группы. В водном растворе кислотные группы диссоциируют и лигандами являются анионы. Это повышает прочность комплексов, так как ионы металлов связывается с комплексоном еще и благодаря электростати-

ческим взаимодействиям. Образующиеся комплексы называют **комплексо- натами**. Особенность комплексонов в том, что они способны образовывать прочные комплексы <u>с катионами щелочноземельных металлов</u>, которые с обычными монодентатными лигандами устойчивых комплексов не образуют. Пример самого распространенного комплексона — этилендиаминтетрауксусная кислота, техническое название — Трилон Б.

Из приводимой ниже таблицы видно, как велика прочность комплексов с участием этого комплексона.

Ниже приводится структура комплексного аниона в соли K[Al(Edta)] (Edta – этилендиаминтетраацетат, образующийся при диссоциации всех четырех кислотных групп молекулы этилендиаминтетрауксусной кислоты. В образовании координационных связей принимают участие два атома азота и четыре атома кислорода карбоксильных групп. Координационный полиэдр – искаженный октаэдр (углы – от 83° до 110°).


Комплексоны применяются в химическом анализе; по количеству комплексона, израсходованного для полного связывания катионов металла, можно определить количество этих катионов.

DEMO: комплексонометрическое титрование

Еще один интересный класс лигандов, важный как с теоретической, так и с практической точки зрения — это макроциклические лиганды. В этом

классе есть два основных подкласса: так называемые **краун-эфиры** и **криптанды**. <u>Краун-эфиры</u> называются так потому, что молекула такого циклического эфира напоминает по форме корону — она почти плоская, и атомы, чередуясь, выходят из плоскости то вверх, то вниз. Название <u>криптанд</u> происходит от греческого слова крипта — потаенное место. Дело в том, что ион металла, попавший во внутреннюю полость молекулы криптанда, оказывается практически изолированным и от противоионов, и от молекул растворителя.

Название краун-эфира содержит указание на то, сколько всего атомов образует макроцикл (в данном случае -18) и сколько из них донорных центров (в данном случае -6 атомов кислорода).

Комплекс $[K(18-crown-6)]^+$, сумма углов O-K-O = 363°

Константы образования комплексов краун-эфиров и криптандов (в воде):

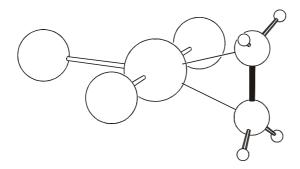
	Na ⁺	K ⁺	Ca ²⁺	Sr ²⁺
15-краун-5	5.0	5.5	-	89
18-краун-6	6.3	107	3.2	525
[2.1.1]	$1.2 \cdot 10^6$	182	$2.2 \cdot 10^4$	794
[2.2.2]	$1.6 \cdot 10^7$	$5.6 \cdot 10^9$	$4.0 \cdot 10^7$	$3.2 \cdot 10^{11}$

Название криптанда указывает, сколько донорных центров содержится в каждой из трех ветвей, связывающих атомы азота.

Особенностью макроциклических лигандов является то, что они образуют комплексы не с любыми катионами, а преимущественно с теми, которые имеют подходящий размер, то есть хорошо вписываются во внутреннюю полость молекулы. Например, <u>18-краун-6</u> относительно слабо связывает маленькие катионы натрия и кальция и значительно прочнее – более крупные

катионы калия и стронция. Значит, если в раствор, содержащий смесь катионов кальция и стронция, которые вообще-то по химическим свойствам весьма близки, добавить этот краун-эфир, то ионы стронция свяжутся в комплекс, а ионы кальция в большинстве своем останутся свободными.

У <u>криптандов</u> эта способность селективно связывать катионы выражена еще сильнее. Криптанд с маленькой полостью прочно связывает ионы натрия, а ионы калия в нем не умещаются. При увеличении размера полости способность удерживать ионы калия резко повышается.

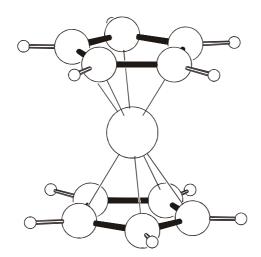

Галогениды щелочных металлов хорошо растворимы только в воде, а в неполярных растворителях они практически нерастворимы. Это понятно — неполярные растворители не сольватируют ионы и, следовательно, нечем компенсировать энергию, затрачиваемую на разрушение кристаллической решетки. А вот в присутствии макроциклических лигандов галогениды щелочных металлов можно растворять и в неполярных растворителях, так как комплексообразование с участием катионов дает необходимый выигрыш энергии. При этом в растворе появляются несольватированные галогенид-ионы, и они вступают во всякие реакции совсем не так, как в водных растворах.

Создатели макроциклических лигандов получили в 1987 г. Нобелевскую премию (Крам, Педерсен, Лен).

π-Комплексы

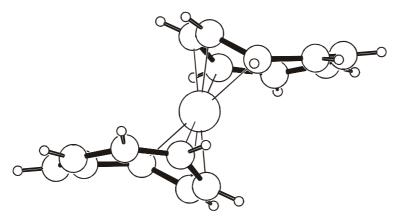
\pi-Комплексы образуются в тех случаях, когда лиганд предоставляет для образования координационной связи электронную пару, лежащую на π -орбитали. Первый π -комплекс был получен в 1827 г. датским аптекарем Цейзе. Цейзе кипятил спиртовой раствор тетрахлороплатината калия K_2 PtCl₄. Возможно, он хотел перекристаллизовать эту соль. Однако в итоге вместо винно-красного K_2 PtCl₄ из раствора выделился желтый осадок. То, что это π -комплекс, и каково его строение стало известно лишь много лет спустя. При кипячении происходит дегидратация этилового спирта с образованием этилена, который и вытесняет из координационной сферы один хлорид-ион. Образующийся комплекс получил название **соль Цейзе**.

$$K_2[PtCl_4] + C_2H_5OH \rightarrow K[PtCl_3(C_2H_4)] + KCl + H_2O$$



Как мы помним, молекула этилена плоская, а π -орбиталь лежит вне плоскости молекулы. Именно так, вне плоскости, и происходит присоединение этой молекулы к иону платины. При образовании комплекса электронная пара

этилена частично переходит к платине, что должно приводить к понижению порядка связи углерод-углерод. Действительно, длина связи С-С в комплексе равна Å, тогда как в свободной молекуле этилена - 1.337 Å, а в молекуле бензола (полуторная связь) - 1.397 Å.

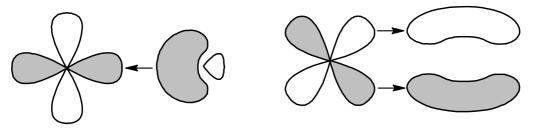

Другой пример π -комплекса — ферроцен. В теме "строение молекул" говорилось о том, что при отщеплении H^+ от молекулы циклопентадиена получается ароматический циклопентадиенил-анион. При попытке получить соль этого аниона с катионом двухвалентного железа образуется π -комплекс.

$$2C_5H_6 + 2Na = 2C_5H_5^- + 2Na^+ + H_2\uparrow$$

FeCl₂ + $2C_5H_5Na = NaCl + Fe(C_5H_5)_2$

Все 10 расстояний Fe-C примерно одинаковы и составляют от 2.01 до 2.05 Å. Никаких свойств, типичных для солей, ферроцен не имеет. Это молекулярное соединение (то есть и в растворах, и в кристаллах он существует в виде отдельных молекул $Fe(C_5H_5)_2$), он легко плавится и легко возгоняется.

Другой пример неароматического углеводорода, способного образовать ароматический анион — это циклооктатетраен. Дианион, получающийся в результате присоединения двух электронов, тоже может образовывать π -комплексы.


 $[Co(C_8H_8)_2]^-$

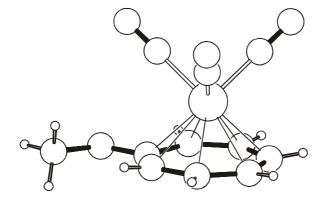
Этот дианион по размерам намного больше, чем циклопентадиенил, поэтому

атом кобальта не может образовать связи со всеми 8 атомами углерода. Четыре кратчайших расстояния Co-C составляют от 1.99 до 2.20 Å.

Комплексы с лигандами π-акцепторного типа

Вернемся к диаграмме МО октаэдрического комплекса. Представим себе, что лиганд имеет помимо заполненной орбитали, перекрывающейся с d_{z^2} и $d_{x^2-y^2}$ орбиталями центрального атома, еще и низколежащую незаполненную (вакантную) орбиталь π -типа. Тогда эта орбиталь может перекрываться с заполненными несвязывающими АО центрального атома (d_{xy} , d_{xz} и d_{yz}). При этом помимо σ -связывания металл-лиганд с переносом заряда от лиганда к атому металла осуществляется также и π -связывание с переносом заряда от металла на вакантную π -орбиталь лиганда. Комплексы такого типа называются π -акцепторными.

 σ -связывание (лиганд \rightarrow металл) π -связывание (металл \rightarrow лиганд)


Наиболее распространенными лигандами π -акцепторного типа являются цианид-ион (CN $^-$) и карбонил (CO). Обратите внимание, что эти лиганды стоят в самом конце спектрохимического ряда, то есть вызывают наибольшее расщепление d-орбиталей. Этот факт легко объяснить, если учесть, что в результате π -связывания орбитали d_{xy} , d_{xz} и d_{yz} перестают быть несвязывающими и их энергия понижается.

Можно предположить (и это предположение будет верным), что наибольшую склонность к образованию π -акцепторных комплексов будут проявлять атомы и ионы-комплексообразователи, на d-орбиталях которых имеется много электронов, то есть это будут металлы конца переходного ряда в низких степенях окисления.

Некоторые примеры комплексов π -акцепторного типа:

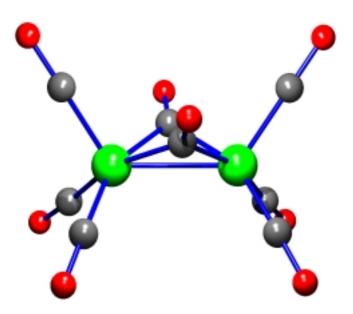
- карбонилы металлов в нулевой степени окисления: $Cr(CO)_6$ (октаэдр), $Ni(CO)_4$ (тетраэдр), $Fe(CO)_5$ (тригональная бипирамида)
- так называемая "Берлинская лазурь" $KFe^{III}[Fe^{II}(CN)_6]$. В кристаллической структуре катионы двухвалентного железа и трехвалентного железа связаны друг с другом цианидными мостиками, причем катионы Fe^{3+} находятся в октаэдрическом окружении из 6 атомов азота (σ -доноры), а катионы Fe^{2+} в окружении из 6 атомов углерода (π -акцепторы)
- комплексы, в которых присутствуют как карбонильные лиганды, так и ароматические лиганды π -акцепторного типа. Например, в приводимом ниже примере комплексного катиона $\left[\eta-(C_7H_6OCH_3)Cr(CO)_3\right]^+$ атом хрома координирован тремя карбонильными группами и катионом тропилия (ароматиче-

ская система, образующаяся из циклогептатриена, но обладающая не π -донорными, как циклопентадиенил, а π -акцепторными свойствами).

Кластеры

Кластерами называют соединения со связями металл-металл. Как получают кластеры и как они построены? В свое время мы договорились, что систематически изучать химические реакции мы не будем. Поэтому данный раздел лишь содержит несколько примеров, цель которых - показать, что к образованию кластеров могут приводить самые разные реакции.

<u>Самый простой пример</u> — димерный гидрат ацетата двухвалентной меди $Cu_2(OOCCH_3)_4(H_2O)_2$. Не надо ничего синтезировать, достаточно перекристаллизовать из воды.


Ионы Cu^{2+} имеют электронную конфигурацию d^9 и, следовательно, соли, содержащие такой катион, должны быть парамагнитными. Однако ацетат меди диамагнитен. Следовательно, в изображенном димере должно существовать прямое взаимодействие металл-металл, которое приводит к спин-спариванию электронов. Это взаимодействие слабое: расстояние Cu...Cu равно 2,61 Å, что значительно больше, чем в молекуле Cu_2 (2,22 Å) и даже больше, чем в ме-

таллической меди (2,56 Å), а энергия связи Cu...Cu составляет лишь около 4 кДж/моль.

<u>Другой пример</u> - получение в лоб: на кобальт действуем окисью углерода и получаем карбонильный кластер кобальта состава $Co_2(CO)_8$.

$$2\text{Co} + 8\text{CO} \rightarrow \text{Co}_2(\text{CO})_8$$
 (автоклав, 450 атм, 130°C, 3 дня)

Метод синтеза не самый удобный для лабораторных условий – нужно высокое давление, а окись углерода – сильный яд. Взаимодействие металл-металл здесь тоже не очень сильное: расстояние Co-Co равно 2,52 Å, что практически равно расстоянию в металлическом кобальте (2,50 Å)

<u>Третий пример</u> – кластерный анион $Re_2Cl_8^{2-}$ получают восстановлением перрената калия фосфорноватистой кислотой.

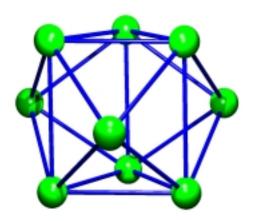
$$2KReO_4 + 4H_3PO_2 + 8HCl \rightarrow Re_2Cl_8^{2-} + 2K^+ + 4H_3PO_3 + 4H_2O$$
 (90°C, 10 час.) $Re_2Cl_8^{2-} + 2(C_4H_9)_4N^+ \rightarrow [(C_4H_9)_4N]_2Re_2Cl_8$ голубой осадок

Для того, чтобы осадить соль, добавляют тетрабутиламмоний. Анион ${\rm Re_2Cl_8}^{2-}$ легко подвергается гидролизу, поэтому в реакционной среде все время должна находиться концентрированная соляная кислота. Связь Re-Re в этом анионе исключительно короткая: 2,22 Å, тогда как в металлическом рении -2,74

Å. Анализ электронного строения этого аниона методом молекулярных орбиталей показывает, что порядок связи Re-Re равен 4: здесь есть σ -связь, 2 π -связи и 1 δ -связь.

<u>Четвертый пример</u> — кластер одновалентной ртути. Никакие другие катионы не димеризуются, а катионы одновалентной ртути существуют не в виде ${\rm Hg}^+$, а в виде ${\rm Hg_2}^{2+}$ — гантелеобразного кластера (расстояние Hg-Hg 2,51 Å), который в водных растворах еще и гидратируется. Реакцию окисления ртути до одновалентной проводят при низкой температуре, так как при нагревании может образоваться двухвалентная ртуть.

$$6$$
Hg + 8 HNO₃ (30%) \rightarrow 3 Hg₂²⁺ + 6 NO₃⁻ + 2 NO + 4 H₂O (неск. дней, 10 - 15 °C)


Наконец, очень интересен <u>пятый пример</u>. При сплавлении щелочных металлов с оловом, сурьмой, свинцом и германием образуются так называемые фазы Цинтля. Это интерметаллиды, то есть химические соединения, состоящие из разных металлов. Тут приводится только одна реакция, но могут получаться и соединения другого состава.

$$4K + 9Sn \rightarrow K_4Sn_9$$
 (сплавление)

Все фазы Цинтля устойчивы только в абсолютно сухой и бескислородной атмосфере. Если на этот интерметаллид подействовать этилендиамином, или, лучше, смесью этилендиамина и криптанда, то катионы калия свяжутся в прочные хелатные комплексы, а анионы ${\rm Sn_9}^{4-}$ тоже перейдут в раствор.

$$K_4Sn_9 + 4\{\text{криптанд}[2,2,2]\} \rightarrow Sn_9^{4-} + 4\{\text{K-криптанд}[2,2,2]\}^{+}$$

Полиэдр, который описывает строение кластерного аниона, называется трехшапочная тригональная призма. Над каждой из боковых граней тригональной призмы располагается дополнительная вершина — шапка

Реакции комплексных соединений с изменением степени окисления центрального атома

<u>DEMO</u>: окисление аммиачного комплекса Co²⁺ перекисью водорода.

При растворении солей кобальта в воде образуются аква-комплексы кобальта. Аква-комплекс двухвалентного кобальта перекисью водорода не окисляется. Более того, если получить простую соль трехвалентного кобальта, например, фторид CoF_3 , и растворить его в воде, то ионы Co^{3+} являются настолько сильным окислителем, что будут разлагать воду.

$$[Co(H_2O)_6]^{2+} + H_2O_2 \rightarrow$$
 реакция не идет, $E^{\circ}(Co^{3+}/Co^{2+}) = +1.92$ В

Если же мы будем окислять аммиачный комплекс Co^{2^+} , то реакция проходит легко и быстро и образуется аммиачный комплекс трехвалентного кобальта темно-желтого. Этот комплекс вполне устойчив и не обладает окислитальной способностью.

$$2[Co(NH_3)_6]^{2+} + H_2O_2 \rightarrow 2[Co(NH_3)_6]^{3+} + 2OH^-$$

 $E^{\circ}(Co(NH_3)_6^{3+}/Co(NH_3)_6^{2+}) = +0.11 \text{ B}$

В чем причина устойчивости иона Co^{3+} в составе комплекса? Дело в том, что аммиачный комплекс трехвалентного кобальта намного прочнее, чем аммиачный комплекс двухвалентного кобальта, его константа образования намного больше.

$$K_{\text{oбp}} ([\text{Co(NH}_3)_6]^{2+}) = 1.0 \cdot 10^4, K_{\text{oбp}} ([\text{Co(NH}_3)_6]^{3+}) = 1.0 \cdot 10^{36}$$

Поэтому в растворе аква-комплексов ионов Co^{3+} практически нет — все они связаны в аммиачный комплекс. Таким образом, образование прочного комплекса может стабилизировать неустойчивую степень окисления металла.

Технически важный пример влияния комплексообразования на протекание окислительно-восстановительной реакции:

$$4Au + 8CN^{-} + O_2 \rightarrow 4[Au(CN)_2]^{-} + 4OH^{-}, \quad K_{ofp}(Au(CN)_2)^{-} = 2.0 \cdot 10^{38}$$

С кислородом золото не взаимодействует. Однако в водных растворах цианидов при доступе кислорода золото растворяется с образованием комплекса — дицианоаурат-аниона. Эта реакция используется для извлечения золота из руд.

Реакции комплексных соединений: замещение лигандов

Оказывается, что реакции замещения очень сильно различаются по скорости. Пример — октаэдрические аквакомплексы различных переходных металлов. Изучалась скорость замещения одной из молекул воды на изотопно-меченную, содержащую изотоп ¹⁷О. Время полуобмена очень сильно зависит от природы центрального атома. Комплексы, в которых реакции замещения проходят быстро, называют **лабильными**, а комплексы, в которых реакции замещения проходят медленно — **инертными**.

Можно было бы предположить, что скорость замещения будет связана с прочностью комплексов: чем выше прочность, тем ниже скорость. Однако это не так. Пример: хлоридный $[PtCl_4]^{2-}$ и цианидный $[Pt(CN)_4]^{2-}$ комплексы двухвалентной платины. Цианидный комплекс намного прочнее ($K_{\text{обр}} = 10^{41}$ против $4\cdot10^{16}$ у хлоридного), однако реакция обмена лиганда в нем проходит

за время смешения реагентов, а в хлоридном время полуобмена составляет 14 часов.

Время полуобмена $(T_{1/2}, c)$ и энергия активации $(\Delta E^{\sharp}, \kappa \not\square \mathcal{H})$ в высокоспиновых комплексах $[M(H_2O)_6]^{n+}$

$$\begin{bmatrix} H_2O & OH_2 \\ H_2O & OH_2 \\ H_2O & OH_2 \\ \end{bmatrix} + H_2O^* \longrightarrow \begin{bmatrix} H_2O & OH_2 \\ H_2O & OH_2 \\ H_2O & OH_2 \\ \end{bmatrix} + H_2O^* + H_2O$$

На сегодняшний день не существует полной теории, которая позволяла бы делать предсказания об инертности или лабильности комплексов. Однако существуют эмпирические закономерности, применимые к тем или иным частным случаям.

Одно из таких закономерностей — это **транс-влияние**. Оно было открыто в 1927 г. Черняевым при исследовании реакций замещения лигандов в комплексах двухвалентной платины, имеющих квадратное строение. Оно применимо и к комплексам других переходных металлов, но наиболее важно для химии платиновых металлов. Скорость замещения лиганда в комплексе сильно зависит от того, какой лиганд находится в транс-положении к нему. Пусть, например, три лиганда — ионы хлора, а четвертый лиганд — переменный, обозначим его как L. Оказывается, что при смене этого лиганда L будет меняться скорость обмена хлорид-ионов в транс-положении, то есть по направлению L-Pt-Cl и в цис-положении, то есть по направлению Cl-Pt-Cl. Возьмем в качестве репера комплекс, где L — это Cl, то есть где все 4 лиганда одинаковы, и примем скорость реакции обмена хлора в этом комплексе за 1.

Если заменить один из хлорид-ионов на азотсодержащий лиганд – пиридин или аммиак – то скорость обмена хлорида в транс-положении к этому лиганду уменьшится в 2,5-3 раза, а скорость обмена хлорид-ионов в цис-положении возрастет. Если в качестве L взять диметилсульфоксид (DMSO), то скорость реакции в транс-положении возрастет в сто раз, а скорость реакции

в цис-положении тоже увеличится, но только в 16 раз. Если же в качестве лиганда L взять молекулу этилена — (а что это такое? это соль Цейзе) — то тогда скорость замещения в транс-положении тоже вырастет в сто раз, а вот скорость замещения в цис-положении уменьшится.

L	Скорость об	мена Cl:
	L-Pt-Cl	Cl-Pt-Cl
Cl ⁻	1.0	1.0
Пиридин	0.28	3.7
NH_3	0.4	2.8
DMSO	~100	16
C_2H_2	~100	0.47

По способности вызывать транс-влияние лиганды образуют такой ряд:

$$CN^{-} \approx CO \approx C_2H_4 >> NO_2^{-} \approx I^{-} > Br^{-} > Cl^{-} > NH_3 > H_2O$$
 (этилен)

Обратите внимание, что самое сильное транс-влияние оказывают те лиганды, которые способны к π -акцепторному взаимодействию с орбиталями центрального атома.

Использование закономерности транс-влияния позволяют химикам получать комплексы нужного строения. Возьмем в качестве примера комплекс, содержащий два хлора и две молекулы аммиака — дихлородиамминплатину. Этот комплекс может существовать в виде двух изомеров — цис- и транс. Цис-изомер ценен — это препарат, который используется в химиотерапии рака. Противоопухолевой активностью обладают многие тысячи химических соединений, но далеко не все из них пригодны для клинических применений. Реально с этой целью используется порядка 25 веществ, и цис-изомер дихлородиамминплатины — одно из них.

Однако цис-изомер термодинамически неустойчив — при установлении равновесия он переходит в более устойчивый транс-изомер, который физиологической активностью не обладает. Тем не менее, его можно получить в условиях так называемого кинетического контроля. Кинетический контроль

— это значит, что продуктом является не то вещество, которое устойчивее, а то вещество, которое быстрее образуется.

Если исходить из тетраамминплатины и действовать на нее хлоридионами, то на первом этапе мы получим комплексный катион хлоротриамминплатины. Хлорид-ион обладает более сильным транс-влиянием, чем молекула аммиака, поэтому молекула аммиака в транс-положении к нему будет легче замещаться, чем молекулы аммиака в цис-положении и реакция приведет к транс-комплексу.

Если же исходить из тетрахлороплатинат-аниона и действовать на него аммиаком, то на первом этапе образуется трихлороамминплатина, в которой наиболее реакционноспособными будут два хлорид-иона в цис-положении к молекуле аммиака, и дальнейшее замешение хлора на аммиак даст преимущественно цис-комплекс. Как следует из приведенной выше таблицы, скорость замещения в цис-положении будет примерно в 7 раз выше, чем в трансположении, а учитывая, что в цис-положении находится 2 хлорид-иона, то соотношение молекул цис- и транс-изомеров будет примерно 14:1, то есть выход цис-изомера составит около 93%.

Реакции лигандов в комплексных соединенях и темплатный синтез

В реакциях такого типа ион-комплексообразователь непосредственно не участвует - он играет роль активатора реакции, то есть со свободным, незакомплексованным лигандом такая реакция либо не идет вообще, либо идет по-другому.

$\underline{\text{DEMO: CoCl}_2 + \text{H}_2\text{O} + \text{Mg}}.$

Чистая вода с магнием не реагирует. Однако если молекула воды входит в состав аква-комплекса, то ее кислотные свойства повышаются и идет реакция с выделением водорода. Почему? При комплексообразовании неподеленная пара атома кислорода смещается к иону-комплексообразователю. Чтобы компенсировать убыть электронной плотности на атоме кислорода, в сторону кислорода смещается электронная плотность на связях О-Н, что приводит к появлению на атомах водорода избыточного положительного заряда. Можно сказать, что в итоге часть положительного заряда центрального иона переносится на атомы водорода. Повышение полярности связи О-Н приводит к повышению кислотных свойств координированных молекул воды, что мы и наблюдаем. Таким образом, аква-комплекс ведет себя как слабая кислота.

А теперь более интересные с практической точки зрения примеры. Комплексообразование приводит к тому, что молекулы лиганда оказываются закрепленными в пространстве, и поэтому реакции с их участием идут поособому, не так, как если бы реагировали отдельные незакрепленные молекулы. Это так называемые реакции **темплатного синтеза**, то есть синтеза на шаблоне.

<u>Первый пример</u> – реакция этилендиаминного комплекса никеля с ацетоном. Если бы ацетон реагировал со свободным этилендиамином, то реак-

ция приводила бы к продукту линейного строения, так называемому азометину, причем реакция была бы обратимой, то есть при добавлении воды продукт разлагался бы на исходные вещества.

$$H_2N$$
 H_3C
 H_3C
 H_3C
 N
 H_3C
 $CH_3 + 2 H_2O$
 CH_3

Если же в реакцию вступает комплекс, то образуется макроцикл.

<u>Другой пример</u>. Когда фуран реагирует с ацетоном в присутствии ионов лития, то образуется макроцикл. Если же реакцию проводить без лития, а просто в подкисленном растворе, то цикл не получается, а получается линейный олигомер.

Те, кто помнит школьный курс органической химии, легко могут увидеть сходство этой реакции с реакцией образования фенолформальдегидной смолы. В чем тут роль катионов лития? По-видимому, реакция проходит через стадию образования комплекса Li^+ с несколькими молекулами фурана, которые потом сшиваются друг с другом молекулами ацетона.

<u>Третий пример</u> — образование фталоцианинов при нагревании фталонитрила (нитрила фталевой кислоты) с солями некоторых переходных металов. Фталоцианины — это очень ценные красители, яркие, светостойкие и химически инертные. У них есть еще одно интересное свойство. В кристаллах молекулы фталоцианинов упакованы таким образом, что образуют стопки —

вроде стопки тарелок. При облучении светом эти вещества становятся одномерными (вдоль оси стопки) проводниками электричества.

Комплексные соединения в катализе

Многие каталитические процессы включают в себя образование комплексных соединений, то есть комплексы являются для этих реакций промежуточными состояниями. Пример такого процесса — окисление этилена до уксусного альдегида в присутствии хлорида палладия и хлорида меди. Эта реакция уже много лет используется в химической промышленности. Ниже приводится схема, отражающая ее основные стадии.

 $CH_2=CH_2+PdCl_2+H_2O=CH_3CHO+Pd^0+2HCl-суммарное уравнение$

$$ightharpoonup$$
 1. Pd + 4 HCl + 1/2O₂ = [PdCl₄]²⁻ + H₂O + 2H⁺ (в присутствии CuCl₂)

2.
$$PdCl_4^{2-} + C_2H_4 \rightleftharpoons [PdCl_3(C_2H_4)]^- + Cl^-$$

3.
$$[PdCl_3(C_2H_4)]^- + H_2O \rightleftharpoons [PdCl_2(H_2O)C_2H_4] + Cl^-$$

4.
$$[PdCl_2(H_2O)C_2H_4] + H_2O \rightleftharpoons [PdCl_2(OH)C_2H_4]^- + H_3O^+$$

5.
$$[Cl_2Pd(OH)C_2H_4]^- \rightleftharpoons [Cl_2Pd-CH_2-CH_2-OH]^- \rightarrow$$

$$\rightarrow \begin{bmatrix} CI & & & \\ Pd-CH_2-CH & & \\ CI & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Вы видите, что все начинается с тетрахлорпалладат-аниона. Сначала происходит образование π -комплекса палладия с этиленом. По-видимому, этот комплекс похож на соль Цейзе. Затем еще один ион хлора в несколько стадий замещается гидроксид-ионом. Затем π -комплекс перегруппировывается в σ -комплекс, который распадается на металлический палладий, хлоридионы и молекулу уксусного альдегида. Металлический палладий снова окисляется до $PdCl_2$, и катализатором тут служит двухвалентная медь.

Примеров протекания каталитических реакций через стадию образования комплексных соединений очень много, но механизмы этих реакций очень сложны и мало изучены. Например, катализаторы Циглера-Натты — а это смесь галогенидов титана и алкильных производных алюминия — используются для получения полиэтилена уже больше 50 лет, а механизм реакции полимеризации с их участием до сих пор детально не известен.

Комплексные соединения в биологических системах

11 металлов – Na, K, Mg, Ca, V, Mn, Fe, Co, Cu, Zn, Mo – несколько высокопарно называют металлами жизни. Суть такого названия в том, что они играют в организмах определенную физиологическую роль. Как видите, 7 из них – это переходные металлы, для которых характерно комплексообразование. Приведем несколько примеров физиологически активных комплексов переходных металлов.

Витамин В₁₂ является коферментом в ряде ферментов (что такое кофермент – говорится в теме "кинетика"). В частности, он входит в состав фермента, ответственного за синтез метионина – одной из аминокислот. Этот витамин синтезируется только микроорганизмами. Человек и другие высшие животные получают его 1)с продуктами питания животного происхождения 2)в поливитаминах в виде синтетического препарата – цианкобаламина 3)в результате жизнедеятельности микрофлоры нашего пищеварительного тракта.

Молекула витамина B_{12} содержит ион двухвалентного кобальта, который координирован 6 лигандами:

- 4 атомами азота макроцикла;
- анионом OH^- или метильной группой в организме или анионом CN^- в синтетическом препарате (на рисунке R);
- атомом азота бензимидазола.

Полный химический синтез осуществлен Р. Вудвордом в 1972 г. В промышленности для получения В₁₂ используют микробиологический синтез.

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_4

Хлорофилл — это комплекс Mg^{2+} с видоизмененным **порфирином** — макроциклом, включающим в себя 4 пиррольных кольца. В растениях встречается несколько видов хлорофилла (хлорофиллы a, b, c_1, c_2, c_3, d), которые немного отличаются друг от друга по строению молекулы (разные R_{1-4}). Существуют еще и бактериохлорофиллы (a, b, c, d, e, g),которые встречаются только в бактериях. Полный синтез хлорофилла a, включающий 46 стадий, осуществлен Р. Вудвордом в 1960 г. Вы видите, что ион Mg^{2+} координационно ненасыщен — он образует 4 координационных связи, тогда как может образовать 6. В организме за счет образования еще 2 связей молекула порфирина прикрепляется к молекулам белка.

В молекуле **гема** порфириновая система видна особенно хорошо. Гем тоже является коферментом в ряде ферментов, но его главная функция — это перенос кислорода в составе гемоглобина или миоглобина — комплексов гема с молекулами белка. В гемоглобине и миоглобине ион Fe^{2^+} образует еще одну координационную связь для связывания с молекулой белка, а шестое координационное место в оксигенированной форме (то есть в форме, содержащей связанную молекулу O_2) заполняется молекулой кислорода.

У некоторых низших животных (моллюсков, членистоногих) переносчиком кислорода является **гемоцианин**.

На рисунке изображен фрагмент молекулы оксигенированной формы гемоцианина краба Limulus Polyphemus. С белковой молекулой связаны 2 иона Cu^+ . Между ними внедряется молекула кислорода, образуя π -комплекс. При внедрении молекулы O_2 ионы меди сближаются друг с другом: расстояние $\mathrm{Cu}\text{-Cu}$ в оксигенированной форме составляет 3,62 Å, а в бескислородной форме — 4,61 Å. Каждый из ионов меди соединен с белковой частью тремя координационными связями с участием атомов азота имидазольных циклов,

входящих в состав остатков гистидина. Здесь изображено строение этой аминокислоты.

$$N$$
 H_2N
 $COOH$

А так построен сам π -комплекс: ионы меди, молекула кислорода и 6 имидазольных циклов гистидиновых остатков:

Еще один пример физиологически активного комплекса — активный центр фермента <u>карбоангидразы</u> — приводился в теме "кинетика".