
Муниципальный этап Всероссийской олимпиады школьников по астрономии

2022-2023 учебный год

11 класс

Максимальный балл – 50 баллов

Задача №1. «Прецессия». (*Максимальный балл* – 10 *баллов*) За сколько лет Северный полюс мира опишет дугу в 5^0 ?

Автор: Ловчиков Дмитрий Владимирович

Возможное решение:

Период прецессии земной оси составляет примерно 25500 лет (см. рисунок). При этом полный поворот составляет 360^{0} . Тогда, для того чтобы Северный полюс мира описал дугу в 5^{0} , необходимо:

$$t = \frac{5 \cdot 25500}{360} = 354.1$$
 года

Nº	Этап решения	Балл
1	Найден период прецессии земной оси	5
2	Найдено время, необходимое для поворота Северного полюса мира на 5^0	5
	Итого:	10

Задача №2. «И дольше века…». (Максимальный балл – 10 баллов)

Космонавт подпрыгнул на железном не вращающемся астероиде радиусом 500 метров с начальной скоростью 1 м/с вертикально вверх. Через какое время после прыжка он вернется на прежнее место? Объем шара считаем по формуле $V=4/3~\pi R^3$, плотность железа 7800 кг/м³.

Автор: Фокин Андрей Владимирович

Возможное решение:

Запишем закон сохранения энергии для прыгнувшего космонавта

$$-G\frac{Mm}{R} + \frac{mv^2}{2} = -G\frac{Mm}{R+H}$$

где M — масса астероида, m — масса космонавта, R — радиус астероида, H — высота прыжка, ν — скорость прыжка. После преобразований найдем высоту прыжка космонавта H.

Движение космонавта после прыжка можно представить как движение по очень вытянутому эллипсу с большой полуосью, равной H/2. Применим 3 закон Кеплера к движению космонавта по круговой орбите вблизи поверхности астероида и к движению по эллипсу после прыжка:

$$\frac{T_{\text{круг}}^2}{T_{\text{эл}}^2} = \frac{R^3}{\left(\frac{H}{2}\right)^3}$$

где $T_{\text{круг}}$ – период обращения на низкой круговой орбите, $T_{\text{эл}}$ – период обращения по эллипсу после прыжка. Для нахождения $T_{\text{круг}}$ запишем закон всемирного тяготения и второй закон Ньютона:

$$G\frac{Mm}{R^2} = \frac{mv_{\text{круг}}^2}{R}$$

С учетом того, что:

$$T_{\text{круг}} = \frac{2\pi R}{v_{\text{круг}}}$$

Получим:

$$T_{\text{круг}} = \sqrt{\frac{3\pi}{G\rho}}$$

Откуда

$$T_{\rm эл} = \sqrt{\frac{3\pi H^3}{8G\rho R^3}}$$

Произведя необходимые вычисления, получим $T_{\text{эл}} = 17,6$ час.

No	Этап решения	Балл
1	Записан закон сохранения энергии для движения космонавта	2
2	Нахождение высоты, на которую подпрыгнул космонавт	1
3	Идея, о том, что после прыжка космонавт движется по эллипсу	1

4	Использование 3 закона Кеплера	2
5	Нахождение первой космической скорости для движения по круговой орбите	2
6	Нахождение времени движения после прыжка	2
	Итого:	10

Задача №3 «Уравнение времени». (Максимальный балл – 10 баллов)

Уравнение времени (η) – это разница между средним солнечным временем и истинным солнечным временем в один и тот же момент. Уравнение времени можно аппроксимировать следующим выражением

$$\eta = 7.53\cos(B) + 1.5\sin(B) - 9.87\sin(2B)$$

где $B = 360^{\circ} \cdot (N-81)/365$, N - порядковый номер дня, начиная с 1 января. С чем связана такая сложная зависимость?

Автор: Фокин Андрей Владимирович

Возможное решение:

Вращение Земли вокруг Солнца происходит по эллиптической орбите. Для наблюдателя, находящегося на Земле, это выражается в том, что видимое движение Солнца по эклиптике относительно неподвижных звезд то ускоряется, то замедляется.

Проекция суточного движения Солнца на небесный экватор меняется в течении года.

Nº	Этап решения	Балл
1	Учет эллиптичности орбиты Земли	5
2	От угла наклона плоскости эклиптики к небесному экватору	5
	Итого:	10

Задача №4. «Земля, Луна, Солнце». (Максимальный балл – 10 баллов)

Известно, что Луна совершает 13 оборотов вокруг Земли в течение земного года. Кроме того, Солнце примерно в 330 тыс. раз тяжелее Земли. Во сколько раз расстояние от Земли до Солнца больше расстояния от Земли до Луны?

Автор: Гусев Андрей Владиславович

Возможное решение:

Закон всемирного тяготения для Земли, вращающейся вокруг Солнца:

$$G\frac{M_3M_C}{R^2} = M_3\frac{v_3^2}{R}$$

Период обращения Земли при этом:

$$T = \frac{2\pi R}{v_3}$$

Получаем, что расстояние от Земли до Солнца:

$$R = \sqrt[3]{\frac{GM_CT^2}{4\pi^2}}$$

Закон всемирного тяготения для Луны, вращающейся вокруг Земли:

$$G\frac{M_{\Pi}M_3}{r^2} = M_{\Pi}\frac{v_{\Pi}^2}{r}$$

Период обращения Луны при этом:

$$\frac{T}{13} = \frac{2\pi r}{v_{\pi}}$$

Получаем, что расстояние от Луны до Земли:

$$r = \sqrt[3]{\frac{GM_3T^2}{4\pi^213^2}}$$

В результате:

$$\frac{R}{r} = \sqrt[3]{\frac{M_{\rm C}}{M_3} \cdot 13^2} \approx$$
 382 раза

Nº	Этап решения	Балл
1	Закон всемирного тяготения для Земли, вращающейся вокруг Солнца	2
2	Период обращения Земли	1
3	Расстояние от Земли до Солнца	1
4	Закон всемирного тяготения для Луны, вращающейся вокруг Земли	3
5	Период обращения Луны	1

6	Расстояние от Луны до Земли	1
7	Численный ответ	1
	Итого:	10

Если при решении задачи были использованы численные значения величин из таблиц со справочными материалами, то в сумме выставляется не более 3-х баллов.

Задача №5 «Двойные звезды». (Максимальный балл – 10 баллов)

Определите период обращения компонентов двойной звезды друг относительно друга, если известны следующие параметры данной системы: их суммарная масса примерно 4,1 массы Солнца, годичный параллакс двойной звезды 0,379", угловой размер большой полуоси видимой орбиты 7,56"

Автор: Гусев Андрей Владиславович

Возможное решение:

Третий закон Кеплера в обобщенной форме:

$$\frac{T^2(M_2 + M_2)}{T_1^2(M_C + m_3)} = \frac{a^3}{a_1^3}$$

где M_1+M_2 - суммарная масса компонентов, выраженная в массах Солнца, T — период обращения, a — большая полуось, выраженная в а.е., a_1 — большая полуось земной орбиты (в а.е.), M_C — масса солнца в солнечных ед. массы, m_3 — масса Земли (много меньше массы Солнца).

Отсюда следует, что

$$M_1 + M_2 = \frac{a^3}{T^2}$$

При этом:

$$a = \frac{a''}{\pi}$$

Получаем:

$$T=\sqrt{rac{\left(rac{a''}{\pi}
ight)^3}{M_1+M_2}}=\sqrt{rac{\left(rac{7,56}{0,379}
ight)^3}{4,1}}=$$
 44,5 года

No	Этап решения	Балл
1	Записан обобщенный 3 закон Кеплера	3
2	Из геометрических соображений найдена большая полуось	3
3	Найдено численное значение периода обращения	4
	Итого:	10