ЗАДАНИЯ И РЕШЕНИЯ ЗАДАНИЙ ОЛИМПИАДЫ «ЛОМОНОСОВ» ПО ХИМИИ

Отборочный тур НОЯБРЬ, 10-11 классы

ЗАДАНИЕ 1

1.1. Назовите два атома, у каждого из которых в основном состоянии общее число d-электронов в два раза больше общего числа s-электронов, запишите их электронные конфигурации. (4 балла)

Ответ: например, олово Sn:
$$1s^22s^22p^63s^23p^64s^23d^{10}4p^64d^{10}5s^25p^2$$
, теллур Te; $1s^22s^22p^63s^23p^64s^23d^{10}4p^64d^{10}5s^25p^4$.

1.2. Назовите два атома, у каждого из которых в основном состоянии общее число s-электронов в полтора раза меньше общего числа p-электронов, запишите их электронные конфигурации. (4 балла)

Ответ: например, скандий Sc: $1s^22s^22p^63s^23p^64s^23d^1$, неон Ne: $1s^22s^22p^6$.

1.3. Назовите два атома, у каждого из которых в основном состоянии общее число s-электронов в два раза меньше общего числа p-электронов, запишите их электронные конфигурации. (4 балла)

Ответ: например, селен Se: $1s^22s^22p^63s^23p^64s^23d^{10}4p^4$, аргон Ar: $1s^22s^22p^63s^23p^6$.

1.4. Назовите два атома, у каждого из которых в основном состоянии общее число d-электронов в полтора раза меньше общего числа p-электронов, запишите их электронные конфигурации. (4 балла)

Ответ: например, никель Ni:
$$1s^22s^22p^63s^23p^64s^23d^8$$
, мышьяк As: $1s^22s^22p^63s^23p^64s^23d^{10}4p^3$.

ЗАДАНИЕ 2

2.1. Приведите структурные формулы двух изомерных углеводородов C_7H_{16} , каждый из которых при хлорировании на свету может образовать одно первичное, одно вторичное и одно третичное хлорпроизводное. Назовите эти углеводороды. (6 баллов)

В каждой из структур все метильные группы CH_3 эквивалентны, точно так же, как метиленовые CH_2 и метиновые CH.

2.2. Приведите структурные формулы двух изомерных углеводородов C_7H_{16} , каждый из которых при хлорировании на свету может образовать три первичных хлорпроизводных. Назовите эти углеводороды. **(6 баллов)**

В каждой из структур имеются три неэквивалентные метильные группы СН₃.

2.3. Приведите структурные формулы двух изомерных углеводородов C_7H_{16} , каждый из которых при хлорировании на свету может образовать два первичных хлорпроизводных, но не образует третичных. Назовите эти углеводороды. **(6 баллов)**

$$Omsem$$
: 2,2-диметилпентан 3,3-диметилпентан CH_3 CH_3 CH_3 CH_2 CH_2 CH_2 CH_3 CH_3 CH_3 CH_3

В каждой из структур имеются две неэквивалентные метильные группы CH_3 , а метиновые группы CH, включающие третичный атом углерода, отсутствуют.

2.4. Приведите структурные формулы двух изомерных углеводородов C_7H_{16} , первый из которых при хлорировании на свету может образовать одно третичное хлорпроизводное, но не образует вторичных, а другой в таких же условиях образует одно вторичное хлорпроизводное, но не образует третичных. Назовите эти углеводороды. (6 баллов)

$$Omsem$$
: 2,2-диметилпентан 3,3-диметилпентан CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

В первой структуре имеется группа CH, включающая третичный атом углерода, а метиленовых групп CH_2 нет. Во второй структуре есть две эквивалентные метиленовые группы, включающие вторичные атомы углерода, а третичных атомов углерода нет.

ЗАДАНИЕ 3

3.1. Известны содержащие азот соединения XNY_5 и X_2NY_7 . Массовая доля азота в одном из соединений равна 45.16%, в другом — 31.11%. Расшифруйте эти соединения и запишите уравнения их взаимодействия с соляной кислотой. (6 баллов)

Решение. Обозначим атомную массу элемента ${\bf X}$ за x, а массу элемента ${\bf Y}$ за y. Каждое из соединений включает один атом азота, значит, массовая доля азота должна быть ниже в более тяжелом соединении. В ${\bf XNY}_5$

$$\omega(N) = \frac{14}{x + 14 + 5y} = 0.4516,$$

а в **X**₂N**Y**₇

$$\omega(N) = \frac{14}{2x + 14 + 7y} = 0.3111.$$

Решение системы

$$\begin{cases} x + 5y = 17; \\ 2x + 7y = 31. \end{cases}$$

дает x = 12, y = 1, эти массы соответствуют углероду и водороду. Искомые соединения — это $\mathrm{CH_3NH_2}$ и $\mathrm{C_2H_5NH_2}$, метиламин и этиламин. Реакции с соляной кислотой приводят к образованию солей:

$$CH_3NH_2 + HC1 \rightarrow CH_3NH_3^+Cl^-,$$

 $C_2H_5NH_2 + HC1 \rightarrow C_2H_5NH_3^+Cl^-.$

Ответ: CH₃NH₂ и C₂H₅NH₂.

3.2. Известны содержащие углерод соединения \mathbf{XCY}_2 и $\mathbf{X}_2\mathbf{CY}_2$. Массовая доля углерода в одном из соединений равна 40.0%, в другом – 26.09%. Расшифруйте эти соединения и запишите уравнения их взаимодействия с хлором в водном растворе. (6 баллов)

Решение. Обозначим атомную массу элемента ${\bf X}$ за x, а массу элемента ${\bf Y}$ за y. Каждое из соединений включает один атом углерода, значит, массовая доля углерода должна быть ниже в более тяжелом соединении. В ${\bf XCY}_2$

$$\omega(C) = \frac{12}{x + 12 + 2y} = 0.40,$$

ав X_2CY_2

$$\omega(C) = \frac{12}{2x + 12 + 2y} = 0.2609.$$

Решение системы

$$\begin{cases} x + 2y = 18; \\ 2x + 2y = 34. \end{cases}$$

дает x = 16, y = 1, эти массы соответствуют кислороду и водороду. Искомые соединения — это CH_2O и CH_2O_2 , формальдегид и муравьиная кислота. Оба соединения в водном растворе окисляются хлором:

$$CH_2O + 2Cl_2 + H_2O \rightarrow CO_2 + 4HCl$$
,
 $HCOOH + Cl_2 \rightarrow CO_2 + 2HCl$.

Ответ: CH₂O и HCOOH.

3.3. Известны содержащие хлор соединения $\mathbf{X}\text{Cl}\mathbf{Y}_3$ и $\mathbf{X}_2\text{Cl}\mathbf{Y}_5$. Массовая доля хлора в одном из соединений равна 70.3%, а в другом – 55.04%. Расшифруйте эти соединения и запишите уравнения их реакции с избытком аммиака. (6 баллов)

Peшение. Обозначим атомную массу элемента **X** за x, а массу элемента **Y** за y. Каждое из соединений включает один атом хлора, значит, массовая доля хлора должна быть ниже в более тяжелом соединении. В **X**Cl**Y** $_3$

$$\omega(\text{Cl}) = \frac{35.5}{x + 35.5 + 3y} = 0.703,$$

а в X_2ClY_5

$$\omega(\text{Cl}) = \frac{35.5}{2x + 35.5 + 5y} = 0.5504.$$

Решение системы

$$\begin{cases} x + 3y = 15; \\ 2x + 5y = 29. \end{cases}$$

дает x = 12, y = 1, эти массы соответствуют углероду и водороду. Искомые соединения — это CH₃Cl и C₂H₅Cl, хлорметан и хлорэтан. Оба соединения реагируют с избытком аммиака:

$$CH_3Cl + 2NH_3 \rightarrow CH_3NH_2 + NH_4Cl$$
,

Ответ: CH₃Cl и C₂H₅Cl.

3.4. Известны содержащие бром соединения X_2BrY_3 и $XBrY_3$. Массовая доля брома в одном из соединений равна 74.77%, а в другом – 84.21%. Расшифруйте эти соединения и запишите уравнения их реакции с кислородом. (6 баллов)

Решение. Обозначим атомную массу элемента \mathbf{X} за x, а массу элемента \mathbf{Y} за y. Каждое из соединений включает один атом брома, значит, массовая доля брома должна быть ниже в более тяжелом соединении. В \mathbf{XBrY}_3

$$\omega(Br) = \frac{80}{x + 80 + 3y} = 0.8421,$$

ав X_2 Br Y_3

$$\omega(Br) = \frac{80}{2x + 80 + 3y} = 0.7477.$$

Решение системы

$$\begin{cases} x + 3y = 15; \\ 2x + 3y = 27. \end{cases}$$

дает x = 12, y = 1, эти массы соответствуют углероду и водороду. Искомые соединения — это CH_3Br и C_2H_3Br , бромметан и бромэтилен. Оба соединения горят в кислороде:

$$2CH_3Br + 3O_2 \rightarrow 2CO_2 + 2H_2O + 2HBr$$
,
 $2C_2H_3Br + 5O_2 \rightarrow 4CO_2 + 2H_2O + 2HBr$.

Omвет: H₂C=CHBr и CH₃Br.

ЗАДАНИЕ 4

4.1. Природный магний представляет собой смесь трех изотопов. Относительные атомные массы 24 Mg и 25 Mg и их содержание в природной смеси равны, соответственно, 23.98504 а.е.м. (мольная доля 78.99%) и 24.985584 а.е.м. (10.0%). Определите массовое число третьего изотопа и рассчитайте его относительную атомную массу. **(6 баллов)**

Pешение. В таблице Д.И. Менделеева указана средняя относительная масса магния — 24.305 а.е.м. Она рассчитана исходя из масс и мольных долей изотопов. Найдем мольную долю третьего изотопа с неизвестной относительной атомной массой A_r :

$$x = 1 - 0.7899 - 0.10 = 0.1101$$
,

тогла

$$24.305 = 0.7899 \cdot 23.98504 + 0.10 \cdot 24.985584 + 0.1101 \cdot A_{r_s}$$

отсюда находим $A_r = 25.9824$ а.е.м. – это 26 Mg.

Ответ: ²⁶Mg, 25.9824 а.е.м.

4.2. Известны четыре стабильных изотопа хрома. Относительные атомные массы 52 Cr, 53 Cr и 54 Cr и их содержание в природной смеси равны, соответственно, 51.940508 а.е.м. (мольная доля 83.79%), 52.940649 а.е.м. (9.50%) и 53.938880 а.е.м. (2.365%). Определите массовое число четвертого изотопа и рассчитайте его относительную атомную массу. (**6 баллов**)

Pешение. В таблице Д.И. Менделеева указана средняя относительная атомная масса хрома — 51.996 а.е.м. Она рассчитана исходя из масс и мольных долей изотопов. Найдем мольную долю четвертого изотопа с неизвестной относительной атомной массой A_r :

$$x = 1 - 0.8379 - 0.0950 - 0.02365 = 0.04345$$

тогда $51.996 = 0.8379 \cdot 51.940508 + 0.095 \cdot 52.940649 + 0.02365 \cdot 53.938880 + 0.04345 \cdot A_r$, отсюда находим $A_r = 49.9432$ а.е.м. – это 50 Cr.

Omsem: ⁵⁰Cr, 49. 9432 a.e.m.

4.3. Природный стронций представляет собой смесь четырех изотопов. Относительные атомные массы 84 Sr, 86 Sr и 88 Sr и их содержание в природной смеси равны, соответственно, 83.913425 а.е.м. (мольная доля 0.5%), 85.9092602 а.е.м. (9.8%), 87.905612 а.е.м. (82.7%). Определите массовое число четвертого изотопа и рассчитайте его относительную атомную массу. (6 баллов)

Pешение. В таблице Д.И. Менделеева указана средняя относительная атомная масса стронция — 87.62 а.е.м. Она рассчитана исходя из масс и мольных долей изотопов. Найдем мольную долю четвертого изотопа с неизвестной относительной атомной массой A_r :

$$x = 1 - 0.005 - 0.098 - 0.827 = 0.07$$
,

тогда $87.62 = 0.005 \cdot 83.913425 + 0.098 \cdot 85.9092602 + 0.827 \cdot 87.905612 + 0.07 \cdot A_r$, отсюда находим $A_r = 86.9055$ а.е.м. – это 87 Sr.

Ответ: ⁸⁷Sr, 86.9055 а.е.м.

4.4. Природный кремний представляет собой смесь трех изотопов. Относительные атомные массы 28 Si и 29 Si и их содержание в природной смеси равны, соответственно, 27.976927 а.е.м. (мольная доля 92.23 %) и 28.976495 а.е.м. (4.67%). Определите массовое число третьего изотопа и рассчитайте его относительную атомную массу. (6 баллов)

Решение. В таблице Д.И. Менделеева указана средняя относительная масса кремния — 28.0855 а.е.м. Она рассчитана исходя из масс и мольных долей изотопов. Найдем мольную долю третьего изотопа с неизвестной относительной атомной массой A_r :

$$x = 1 - 0.9223 - 0.0467 = 0.031$$
,

тогла

 $28.0855 = 0.9223 \cdot 27.976927 + 0.0467 \cdot 28.976495 + 0.031 \cdot A_r$

отсюда находим $A_r = 29.9735$ а.е.м. – это 30 Si.

Ответ: ³⁰Si, 29.9735 а.е.м.

ЗАДАНИЕ 5

5.1. Квас — это продукт молочнокислого и спиртового брожения сахаристых веществ. Для приготовления 2 л домашнего кваса использовали сырье, содержащее 45.28 г глюкозы. В результате брожения был получен напиток, массовая доля спирта в котором составила 1.15%. Определите pH кваса, считая, что его кислотность обусловлена только молочной кислотой ($K_{\text{дис}} = 1.38 \cdot 10^{-4}$), плотность кваса равна 1 г/мл, а реакции брожения прошли количественно. (**10 баллов**)

Решение. Реакции молочнокислого и спиртового брожения глюкозы приводят к образованию молочной кислоты и этанола соответственно:

$$C_6H_{12}O_6 \xrightarrow{\phi e p M e H M} 2CH_3CH(OH)COOH;$$

 $C_6H_{12}O_6 \xrightarrow{\phi e p M e H M} 2C_2H_5OH + 2CO_2\uparrow.$

Всего было использовано глюкозы

$$\nu(C_6H_{12}O_6)_{\text{исх}} = 45.28 / 180 = 0.2516$$
 моль.

Масса и количество спирта в полученной порции кваса (2000 г) равны

$$m$$
(спирта) = $0.0115 \cdot 2000 = 23.0$ г.

$$v(спирта) = 23 / 46 = 0.50 моль.$$

Количество глюкозы, затраченной на получение спирта, составляет

$$\nu(C_6H_{12}O_6)_1 = 0.5 \cdot \nu(\text{спирта}) = 0.25 \text{ моль.}$$

Значит, на получение молочной кислоты пошло

$$v(C_6H_{12}O_6)_2 = 0.2516 - 0.25 = 0.0016$$
 моль

глюкозы, и количество полученной молочной кислоты равно

$$\nu$$
(кислоты) = $2 \cdot \nu (C_6 H_{12} O_6)_2 = 0.0032$ моль.

Молярная концентрация молочной кислоты составляет

$$c = v / V = 0.0032 / 2 = 0.0016$$
 моль/л.

Молочная кислота частично диссоциирует:

$$CH_3CH(OH)COOH \rightleftharpoons CH_3CH(OH)COO^- + H^+$$

выражение для константы диссоциации кислоты, обозначив концентрацию Н⁺:

$$K_{\text{дис}} = \frac{[\text{H}^+][\text{CH}_3\text{CH}(\text{OH})\text{COO}^-]}{c - [\text{H}^+]} = \frac{[\text{H}^+]^2}{c - [\text{H}^+]},$$

$$1.38 \cdot 10^{-4} = \frac{x^2}{0.0016 - x}.$$

$$x^2 + 1.38 \cdot 10^{-4} x - 2.208 \cdot 10^{-7} = 0$$

Получаем квадратное уравнение: $x^2 + 1.38 \cdot 10^{-4} \, x - 2.208 \cdot 10^{-7} = 0,$ решение которого $x = 4.06 \cdot 10^{-4}$ моль/л. Тогда рН напитка составляет

$$pH = -lg[H^+] = -lg(4.06 \cdot 10^{-4}) = 3.39.$$

Ответ: 3.39.

5.2. Квас – это продукт молочнокислого и спиртового брожения сахаристых веществ. Для приготовления 1200 мл домашнего кваса использовали сырье, содержащее 28.26 г глюкозы. В результате брожения был получен напиток с рН, равным 3.383. Рассчитайте массовую долю спирта в квасе, считая, что его кислотность обусловлена только молочной кислотой $(K_{\text{лис}} = 1.38 \cdot 10^{-4})$, плотность кваса равна 1 г/мл, а реакции брожения прошли количественно. (10 баллов)

Решение. Реакции молочнокислого и спиртового брожения глюкозы приводят к образованию молочной кислоты и этанола соответственно:

$$C_6H_{12}O_6 \xrightarrow{\phi e p M e H m} 2CH_3CH(OH)COOH;$$

 $C_6H_{12}O_6 \xrightarrow{\phi e p M e H m} 2C_2H_5OH + 2CO_2\uparrow.$

Молочная кислота частично диссоциирует:

$$CH_3CH(OH)COOH \rightleftharpoons CH_3CH(OH)COO^- + H^+$$

Зная pH раствора, можно рассчитать концентрацию H^+ : $[H^+] = 10^{-pH} = 10^{-3.383} = 4.14 \cdot 10^{-4} \text{ моль/л}.$

$$[H^{+}] = 10^{-pH} = 10^{-3.383} = 4.14 \cdot 10^{-4} \text{ моль/л}.$$

Запишем выражение для константы диссоциации кислоты и найдем концентрацию образовавшейся при брожении молочной кислоты:

$$K_{\text{дис}} = \frac{[\text{H}^+][\text{CH}_3\text{CH}(\text{OH})\text{COO}^-]}{c - [\text{H}^+]} = \frac{[\text{H}^+]^2}{c - [\text{H}^+]},$$
$$1.38 \cdot 10^{-4} = \frac{(4.14 \cdot 10^{-4})^2}{c - 4.14 \cdot 10^{-4}},$$

откуда получаем $c = 1.656 \cdot 10^{-3}$ моль/л. Количество кислоты равно

$$v(\text{кислоты}) = c \cdot V = 1.656 \cdot 10^{-3} \cdot 1.2 = 1.987 \cdot 10^{-3} \text{ моль},$$

тогда количество глюкозы, затраченной на получение молочной кислоты, составляет

$$\nu(C_6H_{12}O_6)_1 = 0.5 \cdot \nu(\text{кислоты}) = 9.94 \cdot 10^{-4} \text{ моль.}$$

Всего глюкозы было

$$v(C_6H_{12}O_6)_{ucx} = 28.26 / 180 = 0.157$$
 моль.

Тогда на получение этилового спирта глюкозы пошло

$$v(C_6H_{12}O_6)_2 = 0.157 - 9.94 \cdot 10^{-4} = 0.156$$
 моль, $v(\text{спирта}) = 2v(C_6H_{12}O_6)_2 = 0.312$ моль, $m(\text{спирта}) = 46 \cdot 0.312 = 14.35$ г.

Массовая доля спирта в квасе составляет

$$\omega(C_2H_5OH) = 14.35 / 1200 = 0.012$$
 (или 1.2%).

5.3. Квас – это продукт молочнокислого и спиртового брожения сахаристых веществ. Для приготовления 1400 мл домашнего кваса использовали сырье, содержащее 57 г глюкозы. В результате брожения был получен напиток с рН, равным 3.161, а массовая доля спирта в квасе оказалась равной 1.2%. Определите выход реакций брожения по каждому из путей. Примите, что плотность кваса равна 1 г/мл, а его кислотность обусловлена только молочной кислотой ($K_{\text{пис}} = 1.38 \cdot 10^{-4}$). (10 баллов)

Решение. Реакции молочнокислого и спиртового брожения глюкозы приводят к образованию молочной кислоты и этанола соответственно:

$$C_6H_{12}O_6 \xrightarrow{\phi epmenm} 2CH_3CH(OH)COOH;$$

 $C_6H_{12}O_6 \xrightarrow{\phi epmenm} 2C_2H_5OH + 2CO_2\uparrow.$

Молочная кислота частично диссоциирует:

$$CH_3CH(OH)COOH \rightleftharpoons CH_3CH(OH)COO^- + H^+$$

Зная pH раствора, можно рассчитать концентрацию H^+ : $[H^+] = 10^{-pH} = 10^{-3.161} = 6.9 \cdot 10^{-4} \text{ моль/л}.$

$$[H^{+}] = 10^{-pH} = 10^{-3.161} = 6.9 \cdot 10^{-4} \text{ моль/л}$$

Запишем выражение для константы диссоциации кислоты и найдем концентрацию образовавшейся при брожении молочной кислоты:

$$K_{\text{дис}} = \frac{[\text{H}^+][\text{CH}_3\text{CH}(\text{OH})\text{COO}^-]}{c - [\text{H}^+]} = \frac{[\text{H}^+]^2}{c - [\text{H}^+]},$$
$$1.38 \cdot 10^{-4} = \frac{(6.9 \cdot 10^{-4})^2}{c - 6.9 \cdot 10^{-4}},$$

откуда получаем $c=4.14\cdot 10^{-3}$ моль/л. Количество образовавшейся молочной кислоты равно $\nu(\text{кислоты})=c\cdot V=4.14\cdot 10^{-3}\cdot 1.4=5.8\cdot 10^{-3}$ моль.

Всего глюкозы было

$$v(C_6H_{12}O_6) = 57 / 180 = 0.317$$
 моль.

Значит, максимальное возможное количество молочной кислоты, которое могло теоретически получиться из глюкозы, составляет

$$\nu$$
(кислоты)_{теор} = 2ν (C₆H₁₂O₆) = 0.634 моль,

тогда выход реакции молочнокислого брожения равен

$$\eta = \nu(\text{кислоты}) / \nu(\text{кислоты})_{\text{теор}} = 5.8 \cdot 10^{-3} / 0.634 = 0.0091 (или 0.91%).$$

В полученной порции кваса (1400 г) содержится спирта

$$m(C_2H_5OH) = 0.012 \cdot 1400 = 16.8 \, \Gamma,$$
 $\nu(\text{спирта}) = 16.8 / 46 = 0.365 \, \text{моль}.$

Из всего исходного количества глюкозы можно было получить

$$\nu$$
(спирта)_{теор} = 2ν ($C_6H_{12}O_6$) = 0.634 моль.

Значит, выход реакции спиртового брожения составил

$$\eta = \nu (\text{спирта}) / \nu (\text{спирта})_{\text{теор}} = 0.365 / 0.634 = 0.576 (или 57.6%).$$

Ответ: выход реакции молочнокислого брожения 0.91%, выход реакции спиртового брожения 57.6%.

5.4. Квас – это продукт молочнокислого и спиртового брожения сахаристых веществ. Рассчитайте массу глюкозы, подвергнутой брожению, в результате которого было получено 1.5 л домашнего кваса с рН, равным 3.383. Массовая доля спирта в квасе составила 1.3%. Примите, что плотность напитка равна 1 г/мл, его кислотность обусловлена только молочной кислотой ($K_{\text{дис}} = 1.38 \cdot 10^{-4}$), а реакции брожения прошли количественно. (10 баллов)

Решение. Реакции молочнокислого и спиртового брожения глюкозы приводят к образованию молочной кислоты и этанола соответственно:

$$C_6H_{12}O_6 \xrightarrow{\phi e p M e H M} 2CH_3CH(OH)COOH;$$

 $C_6H_{12}O_6 \xrightarrow{\phi e p M e H M} 2C_2H_5OH + 2CO_2\uparrow.$

Молочная кислота частично диссоциирует:

$$CH_3CH(OH)COOH \rightleftharpoons CH_3CH(OH)COO^- + H^+$$

Зная рН раствора, можно рассчитать концентрацию Н⁺:

$$[H^+] = 10^{-pH} = 10^{-3.383} = 4.14 \cdot 10^{-4}$$
 моль/л.

Запишем выражение для константы диссоциации кислоты и найдем концентрацию образовавшейся при брожении молочной кислоты:

$$K_{\text{дис}} = \frac{[\text{H}^+][\text{CH}_3\text{CH}(\text{OH})\text{COO}^-]}{c - [\text{H}^+]} = \frac{[\text{H}^+]^2}{c - [\text{H}^+]},$$
$$1.38 \cdot 10^{-4} = \frac{(4.14 \cdot 10^{-4})^2}{c - 4.14 \cdot 10^{-4}},$$

откуда получаем $c = 1.656 \cdot 10^{-3}$ моль/л. Количество кислоты равно

$$v(\text{кислоты}) = c \cdot V = 1.656 \cdot 10^{-3} \cdot 1.5 = 2.484 \cdot 10^{-3} \text{ моль,}$$

тогда количество глюкозы, затраченной на получение молочной кислоты, равно

$$\nu(C_6H_{12}O_6)_1 = 0.5 \cdot \nu(\kappa$$
ислоты) = $1.242 \cdot 10^{-3}$ моль.

В полученной порции кваса (1500 г) содержится спирта

$$m(C_2H_5OH) = 0.013 \cdot 1500 = 19.5 \ \Gamma,$$

v(спирта) = 19.5 / 46 = 0.424 моль.

Тогда глюкозы на получение этилового спирта пошло

$$\nu(C_6H_{12}O_6)_2 = 0.5 \cdot \nu(\text{спирта}) = 0.212 \text{ моль.}$$

Всего глюкозы было

$$\nu(C_6H_{12}O_6)_{\text{исх}}=1.242\cdot 10^{-3}+0.212=0.2132$$
 моль. $m(C_6H_{12}O_6)=180\cdot 0.2132=38.384$ г.

Ответ: 38.384 г.

ЗАДАНИЕ 6

6.1. При охлаждении водного раствора нитрата неизвестного металла было получено 0.3 моль кристаллогидрата, в котором массовая доля безводной соли составляет 59.50%, а масса кристаллизационной воды на 22.8 г меньше массы безводной соли. Определите состав кристаллогидрата. **(12 баллов)**

Решение. Пусть в осадок выпало m г кристаллогидрата $\mathbf{Me}(NO_3)_x \cdot nH_2O$. Обозначим через A молярную массу безводного нитрата $\mathbf{Me}(NO_3)_x$. Тогда по условию задачи:

$$m = 0.3(A + 18n),$$

 $0.3A = 0.5950m,$
 $0.3(A - 18n) = 22.8.$

Решив систему из трех уравнений, получаем m=120~ г, A=238~ г/моль, n=9. Для установления состава необходимо определить неизвестный металл, валентность x которого нам также не известна. Пусть M- атомная масса металла. Предположим, что металл одновалентный, тогда

$$M + 62 = 238$$
, $M = 176$ г/моль. Такого металла нет.

Если металл двухвалентный, тогда

$$M + 62 \cdot 2 = 238$$
, $M = 114$ г/моль. Такого металла нет.

Если металл трехвалентный, тогда

 $M + 62 \cdot 3 = 238$, M = 52 г/моль, это хром. Состав кристаллогидрата — $Cr(NO_3)_3 \cdot 9H_2O$. *Ответ*: $Cr(NO_3)_3 \cdot 9H_2O$.

6.2. При охлаждении водного раствора сульфата неизвестного металла было получено 0.2 моль кристаллогидрата, в котором массовая доля безводной соли составляет 61.29%, а масса

кристаллизационной воды на 25.2 г меньше массы безводной соли. Определите состав кристаллогидрата. (12 баллов)

Решение. Пусть в осадок выпало m г кристаллогидрата $\mathbf{Me}_x(SO_4)_y \cdot nH_2O$. Обозначим через A молярную массу безводного сульфата $\mathbf{Me}_x(SO_4)_y$. Тогда по условию:

$$m = 0.2(A + 18n),$$

 $0.2A = 0.6129m,$
 $0.2(A - 18n) = 25.2.$

Решив систему из трех уравнений, получаем m=111.6 г, A=342 г/моль, n=12. Для установления состава необходимо определить неизвестный металл, валентность которого нам также не известна. Пусть M — атомная масса металла. Предположим, что металл одновалентный, тогда

$$2M + 96 = 342$$
, $M = 123$ г/моль. Такого металла нет.

Если металл двухвалентный, тогда

$$M + 96 = 342$$
, $M = 246$ г/моль. Такого металла нет.

Если металл трехвалентный, тогда

$$2M + 3 \cdot 96 = 342$$
, $M = 27$ г/моль. Это алюминий.

Состав кристаллогидрата — $Al_2(SO_4)_3 \cdot 12H_2O$.

Ответ: $Al_2(SO_4)_3 \cdot 12H_2O$.

3. При охлаждении водного раствора нитрата неизвестного металла было получено 0.4 моль кристаллогидрата, в котором массовая доля безводной соли составляет 59.90%, а масса кристаллизационной воды на 32.0 г меньше массы безводной соли. Определите состав кристаллогидрата. **(12 баллов)**

Решение. Пусть в осадок выпало m г кристаллогидрата $\mathbf{Me}(NO_3)_x \cdot nH_2O$. Обозначим через A молярную массу безводного нитрата $\mathbf{Me}(NO_3)_x$. Тогда по условию:

$$m = 0.4(A + 18n),$$

 $0.4A = 0.5990m,$
 $0.4(A - 18n) = 32.0.$

Решив систему из трех уравнений, получаем m=161.6 г, A=242 г/моль, n=9. Для установления состава необходимо определить неизвестный металл, валентность которого нам также не известна. Пусть M- атомная масса металла. Предположим, что металл одновалентный, тогда

$$M + 62 = 242$$
, $M = 180$ г/моль. Такого металла нет.

Если металл двухвалентный, тогда

$$M + 2 \cdot 62 = 242$$
, $M = 118$ г/моль. Такого металла нет.

Если металл трехвалентный, тогда

$$M+3\cdot 62=242, M=56$$
 г/моль. Это железо. Состав кристаллогидрата $Fe(NO_3)_3\cdot 9H_2O$. *Ответ:* $Fe(NO_3)_3\cdot 9H_2O$.

4. При охлаждении водного раствора хлорида неизвестного металла было получено 0.6 моль кристаллогидрата, в котором массовая доля безводной соли составляет 55.28%, а масса кристаллизационной воды на 15.3 г меньше массы безводной соли. Определите состав кристаллогидрата. **(12 баллов)**

Решение. Пусть в осадок выпало m г кристаллогидрата $\mathbf{MeCl}_x \cdot n\mathbf{H}_2\mathbf{O}$. Обозначим через A молярную массу безводного хлорида \mathbf{MeCl}_x . Тогда по условию:

$$m = 0.6(A + 18n),$$

 $0.6A = 0.5528m,$
 $0.6(A - 18n) = 15.3.$

Решив систему из трех уравнений, получаем $m=144.9~\mathrm{r},\,A=133.5~\mathrm{r/моль},\,n=6.$ Для установления состава необходимо определить неизвестный металл, валентность которого нам также не известна. Пусть M- атомная масса металла. Предположим, что металл одновалентный, тогда

M + 35.5 = 133.5, M = 98 г/моль. Такого металла нет (Тс – не подходит).

Если металл двухвалентный, тогда

 $M + 2 \cdot 35.5 = 133.5, M = 62.5$ г/моль. Такого металла нет.

Если металл трехвалентный, тогда

 $M+3\cdot 35.5=133.5, M=27$ г/моль. Это алюминий. Состав кристаллогидрата AlCl₃·6H₂O. *Ответ:* AlCl₃·6H₂O.

ЗАДАНИЕ 7

7.1. Запишите уравнения реакций, соответствующих приведенным ниже превращениям. Расшифруйте неизвестные вещества, укажите условия проведения реакций. **(12 баллов)**

Решение:

7.2. Запишите уравнения реакций, соответствующих приведенным ниже превращениям. Расшифруйте неизвестные вещества, укажите условия проведения реакций. (12 баллов)

Решение:

7.3. Запишите уравнения реакций, соответствующих приведенным ниже превращениям. Расшифруйте неизвестные вещества, укажите условия проведения реакций. **(12 баллов)**

Решение:

1.
$$H_2N$$
— CH — $COOH$ + 2NaOH $\xrightarrow{t^0}$ H_2N — CH_2 — $CH_2CH(CH_3)_2$ + Na₂CO₃ + H_2O $CH_2CH(CH_3)_2$

2.
$$H_2N - CH_2 - CH_2CH(CH_3)_2 + NaNO_2 + HC1 \longrightarrow HO - CH_2 - CH_2CH(CH_3)_2 + NaCl + H_2O + N_2$$

3. HO—CH₂—CH₂CH(CH₃)₂
$$\xrightarrow{\text{H}_2\text{SO}_4(\text{конц.})}$$
 CH₂=CHCH(CH₃)₂ + H₂O

4.
$$CH_2 = CHCH(CH_3)_2 + Br_2 \xrightarrow{hv} CH_2 = CH - C(CH_3)_2 + HBr$$
Br

5.
$$CH_2=CH-C(CH_3)_2+NaOH \xrightarrow{C_2H_5OH} CH_2=CH-C=CH_2+NaBr+H_2O$$

$$CH_3=CH-CC+CH_3+NaOH \xrightarrow{C_2H_5OH} CH_3+NaBr+H_2O$$

6.
$$CH_2=CH-C=CH_2+Br_2 \xrightarrow{40 \text{ °C}} BrCH_2-CH=C-CH_2Br$$
 $CH_3 CH_3$

7.4. Запишите уравнения реакций, соответствующих приведенным ниже превращениям. Расшифруйте неизвестные вещества, укажите условия проведения реакций. (12 баллов)

$$H_2N$$
—CH—COOH I_0 I_0

Решение:

1.
$$H_2N$$
— CH — $COOH + 2NaOH $\xrightarrow{t^0}$ H_2N — CH_2 — $(CH_2)_3NH_2 + Na_2CO_3 + H_2O (CH_2)_3NH_2$$

2.
$$H_2N - CH_2 - (CH_2)_3NH_2 + 2NaNO_2 + 2HC1 \longrightarrow HO - CH_2 - (CH_2)_3OH + 2NaC1 + 2H_2O + 2N_2$$

3. HO—CH₂—(CH₂)₃OH
$$\xrightarrow{\text{H}_2\text{SO}_4(\text{конц.})}$$
 О + H₂O

4. HO—CH₂—(CH₂)₃OH
$$\xrightarrow{\text{H}_2\text{SO}_4(\text{конц.})}$$
 CH₂=CH-CH=CH₂ + 2H₂O

5.
$$CH_2$$
= CH - CH = CH_2 + HBr $\xrightarrow{40 \text{ }^{0}\text{C}}$ CH_3 - CH = CH - CH_2 Br

6.
$$CH_2=CH-CH=CH_2+Br_2$$

Br $CH_2-CH-CH=CH_2$

Br

ЗАДАНИЕ 8

8.1. Напишите уравнения реакций приведенных ниже превращений и укажите условия их проведения (все неизвестные вещества содержат фосфор). (12 баллов)

$$\mathbf{X2} \stackrel{\mathsf{KMnO}_4}{\longleftarrow} \mathbf{X1} \stackrel{\mathsf{KOH, u36.}}{\longleftarrow} \mathrm{PCl}_3 \stackrel{\mathsf{Cl}_2, u36.}{\longleftarrow} \mathbf{X3} \stackrel{\mathsf{P}_2\mathsf{O}_5, t^0}{\longrightarrow} \mathbf{X4} \longrightarrow \mathsf{K}_3\mathsf{PO}_4$$

Решение.

- 1) $2P + 3Cl_2(недост.) \rightarrow 2PCl_3$;
- 2) $PCl_3 + 8KOH(p-p) \rightarrow K_2HPO_3 + 5KCl + 4H_2O$;
- 3) $5K_2HPO_3 + 2KMnO_4 + 8H_2SO_4 \rightarrow MnSO_4 + 6K_2SO_4 + 5H_3PO_4 + 3H_2O_5$
- 4) $2P + 5Cl_2(изб.) \rightarrow PCl_5$;
- 5) $3PCl_5 + P_2O_5 \xrightarrow{t^{\circ}} 5POCl_3$;
- 6) $POCl_3 + 6KOH \rightarrow K_3PO_4 + 3KCl + 3H_2O$.

Omeem: $X1 - K_2HPO_3$, $X2 - H_3PO_4$, $X3 - PCl_5$, $X4 - POCl_3$.

8.2. Напишите уравнения реакций приведенных ниже превращений и укажите условия их проведения (все неизвестные вещества содержат серу). (12 баллов)

$$PbS \longleftarrow X1 \stackrel{HI}{\longleftarrow} H_2SO_4(конц) \stackrel{HBr}{\longrightarrow} X2 \stackrel{NaOH, изб.}{\longrightarrow} X3 \longrightarrow Na_2S_2O_3 \stackrel{I_2, H_2O}{\longrightarrow} X4$$

Решение.

- 1) $H_2SO_4(конц) + 8HI \rightarrow 4I_2 + H_2S + 4H_2O$;
- 2) $Pb(NO_3)_2 + H_2S \rightarrow PbS \downarrow + 2HNO_3$;
- 3) $H_2SO_4(конц) + 2HBr \rightarrow Br_2 + SO_2 + 2H_2O$;
- 4) $SO_2 + 2NaOH(изб) \rightarrow Na_2SO_3 + H_2O$;
- 5) $Na_2SO_3(p-p) + S \xrightarrow{t^{\circ}} Na_2S_2O_3$;
- 6) $2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$.

Ответ: $X1 - H_2S$, $X2 - SO_2$, $X3 - Na_2SO_3$, $X4 - Na_2S_4O_6$.

8.3. Напишите уравнения реакций приведенных ниже превращений и укажите условия их проведения (все неизвестные вещества содержат хлор). (12 баллов)

NaCl
$$\xrightarrow{\text{H}_2\text{SO}_4(\text{конц})}$$
 X1 \longrightarrow Cl₂ $\xrightarrow{\text{кат}}$ X2 $\xrightarrow{\text{КОН}}$ X3 $\xrightarrow{\text{электролиз}}$ X4 \longrightarrow KClO₄

Решение.

- 1) NaCl + $H_2SO_4(конц) \rightarrow HCl + NaHSO_4$;
- 2) $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 \uparrow + 2H_2O$;
- 3) $Cl_2 + SO_2 \xrightarrow{\text{катализатор}} SO_2Cl_2$;
- 4) $SO_2Cl_2 + 4KOH \rightarrow K_2SO_4 + 2KCl + 2H_2O$;
- 5) KCl + $3H_2O \xrightarrow{\text{эл-лиз без диафр.}} KClO_3 + <math>3H_2\uparrow$;
- 6) $4KClO_3 \xrightarrow{t^0 \le 150} 3KClO_4 + KCl$.

Omeem: **X1** – HCl, **X2** – SO₂Cl₂, **X3** – KCl, **X4** – KClO₃.

8.4. Напишите уравнения реакций приведенных ниже превращений и укажите условия их проведения (все неизвестные вещества содержат азот). (12 баллов)

$$\text{HNO}_3 (50\%) \xrightarrow{\text{As}_2\text{O}_3} \text{X1} + \text{X2} \xrightarrow{\text{охлаждение}} \text{X3} \longrightarrow \text{KNO}_2 \longrightarrow \text{NO} \xrightarrow{\text{Cl}_2, \text{C}_{\text{акт}}} \text{X4} \longrightarrow \text{HNO}_2$$

Решение.

- 1) $HNO_3(50\%) + As_2O_3 + 2H_2O \rightarrow NO\uparrow + NO_2\uparrow + 2H_3AsO_4$;
- 2) NO + NO₂ $\xrightarrow{\text{охлаждение}}$ N₂O₃;
- 3) $N_2O_3 + 2KOH(p-p) \rightarrow 2KNO_2 + H_2O_3$;
- 4) $2KNO_2 + 2KI + 2H_2SO_4 \rightarrow I_2\downarrow + 2K_2SO_4 + 2NO\uparrow + 2H_2O$;
- 5) 2NO + Cl₂ $\xrightarrow{\text{катализатор}}$ 2NOCl;
- 6) NOCl + $H_2O \rightarrow HNO_2 + HCl$.

Omeem: X1 - NO, $X2 - NO_2$, $X3 - N_2O_3$, X4 - NOC1.

9.1. Навеску сине-зеленых кристаллов соли Мора растворили в воде, подкисленной серной кислотой. После пропускания через полученный раствор тока кислорода и охлаждения до 0°С выпал светло-сиреневый кристаллический осадок **A**. Кристаллы **A** снова растворили в воде при комнатной температуре и обработали раствором гидроксида калия, при этом выпал бурый осадок **B**. Этот осадок растворили в горячем щелочном растворе гипохлорита калия. К образовавшемуся красно-фиолетовому раствору добавили раствор хлорида бария, что привело к образованию фиолетового осадка **C**, содержащего 49.8% бария по массе. Определите состав соединений **A**, **B** и **C**, напишите уравнения всех упомянутых реакций.

(16 баллов)

Решение. Соль Мора - (NH₄)₂Fe(SO₄)₂ ·6H₂O. При пропускании через раствор этой соли кислорода железо(II) окисляется до железа(III):

$$4\text{FeSO}_4 + \text{O}_2 + \text{H}_2\text{SO}_4 \rightarrow 2\text{Fe}_2(\text{SO}_4)_3 + 2\text{H}_2\text{O}.$$

При охлаждении раствора после пропускания кислорода из него выпадают кристаллы железоаммонийных квасцов (NH_4)Fe(SO_4)₂·12 H_2O (осадок **A**):

$$Fe_2(SO_4)_3 + (NH_4)_2SO_4 + 24H_2O \xrightarrow{0^{\circ}C} 2NH_4Fe(SO_4)_2 \cdot 12H_2O \downarrow$$
.

Взаимодействие раствора квасцов со щелочью приводит к образованию осадка ${\bf B}$ – гидроксида железа(III) ${\sf Fe}({\sf OH})_3$:

$$Fe_2(SO_4)_3 + 6KOH \rightarrow 2Fe(OH)_3 \downarrow + 3K_2SO_4$$
.

Обработка осадка Fe(OH)₃ горячим щелочным раствором гипохлорита калия приводит к образованию феррата(VI) калия, который хорошо растворим:

$$2Fe(OH)_3 + 3KClO + 4KOH \rightarrow 2K_2FeO_4 + 3KCl + 5H_2O$$
.

При добавлении раствора хлорида бария к красно-фиолетовому щелочному раствору, содержащему феррат(VI) калия, выпадает фиолетовый осадок феррата(VI) бария.

Расчет показывает, что в феррате(VI) бария содержится бария

$$\omega(Ba) = 137 / 257 = 0.533$$
 (или 53.3%),

что не совпадает с условием задачи. Предположим, что осадок феррата(VI) бария выпадает в виде кристаллогидрата $BaFeO_4 \cdot xH_2O$:

$$K_2FeO_4 + BaCl_2 + xH_2O \rightarrow BaFeO_4 \cdot xH_2O \downarrow + 2KCl.$$

Тогда

$$\omega(Ba) = 0.498 = 137 / (257 + 18x),$$

отсюда x = 1. Значит, состав осадка $\mathbf{C} - \mathrm{BaFeO_4} \cdot \mathrm{H_2O}$.

Omeem:
$$\mathbf{A} - (NH_4)Fe(SO_4)_2 \cdot 12H_2O$$
, $\mathbf{B} - Fe(OH)_3$, $\mathbf{C} - BaFeO_4 \cdot H_2O$.

9.2. Навеску бледно-голубых кристаллов соли меди(II), состав которой аналогичен соли Мора, растворили в воде. После добавления раствора карбоната натрия к полученному раствору выпал голубовато-зеленый осадок A, содержащий 55.5% меди по массе, и выделился газ. Осадок A растворили в разбавленной соляной кислоте и пропустили в получившийся раствор ток сернистого газа, при этом выпал белый осадок B. Этот осадок растворили в концентрированной соляной кислоте. В образовавшийся бесцветный раствор пропустили ток сероводорода, при этом выпал темно-серый осадок C. Определите состав соединений A, B и C, напишите уравнения всех упомянутых реакций. (16 баллов)

Решение. Аналог соли Мора для меди(II) – $(NH_4)_2Cu(SO_4)_2 \cdot 6H_2O$. При добавлении к раствору этой соли раствора карбоната натрия образуется осадок основного карбоната меди(II), состав которого можно представить, как $Cu(OH)_2 \cdot xCuCO_3$, и выделяется газ (CO_2) :

$$(x+1)$$
CuSO₄ + $(x+1)$ Na₂CO₃ + H₂O \rightarrow Cu(OH)₂· x CuCO₃ \downarrow + $(x+1)$ Na₂SO₄ + CO₂ \uparrow

По условию задачи, массовая доля меди в осадке основного карбоната составляет 0.555:

$$\omega(\mathrm{Cu}) = \frac{64(x+1)}{64(x+1) + 34 + 60x} = 0.555,$$

отсюда x = 2. Состав осадка $\mathbf{A} - \text{Cu}(OH)_2 \cdot 2\text{CuCO}_3$

При растворении основного карбоната меди в соляной кислоте образуется раствор хлорида меди(II):

$$Cu(OH)_2 \cdot 2CuCO_3 + 6HCl \rightarrow 3CuCl_2 + 2CO_2 \uparrow + 4H_2O.$$

При пропускании в раствор хлорида меди(II) сернистого газа выпадает белый осадок хлорида меди(I) CuCl (осадок $\bf B$):

$$2CuCl_2 + SO_2 + 2H_2O \rightarrow 2CuCl \downarrow + H_2SO_4 + 2HCl.$$

Осадок хлорида меди(I) растворяется в концентрированной соляной кислоте:

$$CuCl + HCl(конц) \rightarrow H[CuCl_2].$$

При пропускании в образовавшийся бесцветный раствор сероводорода выпадает темносерый осадок сульфида меди(I) Cu_2S (осадок C):

$$2H[CuCl_2] + H_2S \rightarrow Cu_2S \downarrow + 4HCl.$$

Omeem:
$$\mathbf{A} - \text{Cu}(\text{OH})_2 \cdot 2\text{CuCO}_3$$
, $\mathbf{B} - \text{CuCl}$, $\mathbf{C} - \text{Cu}_2\mathbf{S}$.

9.3. Образец красно-оранжевого минерала крокоита растворили в азотной кислоте. Пропускание через полученный оранжевый раствор тока сернистого газа привело к выпадению белого осадка **A**, содержащего 68.3% свинца по массе. Осадок **A** отделили от образовавшегося зеленого раствора. Добавление к этому раствору раствора карбоната натрия привело к выпадению грязно-зеленого осадка **B**. Осадок **B** растворили в разбавленной серной кислоте, добавили раствор сульфата калия и охладили смесь до 0°С, при этом образовался фиолетовый кристаллический осадок **C**. Определите состав соединений **A**, **B** и **C**. Напишите уравнения всех упомянутых реакций. (16 баллов)

Pешение. Минерал крокоит — хромат свинца(II) PbCrO₄. При обработке этого минерала азотной кислотой образуется раствор оранжевого цвета, содержащий ионы $\operatorname{Cr_2O_7}^{2-}$:

$$2PbCrO_4 + 4HNO_3 \rightarrow 2Pb(NO_3)_2 + H_2Cr_2O_7 + H_2O.$$

При пропускании через этот раствор тока сернистого газа выпадает белый осадок малорастворимого сульфата свинца(II) $PbSO_4$ (осадок **A**):

$$3Pb(NO_3)_2 + H_2Cr_2O_7 + 3SO_2 \rightarrow 2Cr(NO_3)_3 + 3PbSO_4 \downarrow + H_2O.$$

Состав осадка А подтверждается расчетом:

$$\omega(Pb) = 207 / 303 = 0.683,$$

что соответствует условию задачи. Взаимодействие раствора нитрата хрома(III) с карбонатом натрия приводит к образованию осадка ${\bf B}$ – гидроксида хрома(III) ${\rm Cr}({\rm OH})_3$:

$$2Cr(NO_3)_3 + 3Na_2CO_3 + 3H_2O \rightarrow 2Cr(OH)_3\downarrow + 6NaNO_3 + 3CO_2\uparrow$$
.

При обработке осадка $Cr(OH)_3$ раствором серной кислоты образуется раствор сульфата хрома(III):

$$2Cr(OH)_3 + 3H_2SO_4 \rightarrow Cr_2(SO_4)_3 + 6H_2O$$
.

При добавлении к этому раствору раствора сульфата калия и охлаждении смеси до 0° С выпадают фиолетовые кристаллы хромокалиевых квасцов $KCr(SO_4)_2 \cdot 12H_2O$ (осадок C):

$$Cr_2(SO_4)_3 + K_2SO_4 + 24H_2O \xrightarrow{0^{\circ}C} 2KCr(SO_4)_2 \cdot 12H_2O \downarrow.$$
Ombem: **A** – PbSO₄, **B** – Cr(OH)₃, **C** – KCr(SO₄)₂ · 12H₂O.

9.4. Навеску красно-розовых кристаллов марганцевого купороса растворили в воде. После добавления раствора гидроксида натрия к полученному раствору в присутствии кислорода выпал коричневый осадок А. Осадок А растворили в концентрированной соляной кислоте и обработали получившийся бледно-розовый раствор раствором карбоната натрия, что привело к выпадению розового осадка В, содержащего 49.7% марганца по массе. Газообразные продукты в этой реакции не образовывались. Осадок В растворили в разбавленной серной кислоте. К получившемуся слабо-розовому раствору добавили пероксодисульфат аммония и каплю раствора нитрата серебра. Раствор стал фиолетовомалиновым, причем окраску ему придало соединение С. Определите состав соединений А, В и С, напишите уравнения всех упомянутых реакций. (16 баллов)

Решение. Марганцевый купорос − MnSO₄ ·5H₂O. При добавлении к раствору этой соли раствора гидроксида натрия в присутствии кислорода образуется осадок оксида марганца(IV) MnO₂ (осадок **A**):

$$2MnSO_4 + O_2 + 4NaOH \rightarrow 2MnO_2 \downarrow + 2Na_2SO_4 + 2H_2O$$
.

Оксид марганца(IV) окисляет соляную кислоту:

$$MnO_2 + 4HCl(конц) \rightarrow MnCl_2 + Cl_2\uparrow + 2H_2O.$$

Добавление к получившемуся раствору хлорида марганца(II) раствора карбоната натрия приводит к выпадению розового осадка основного карбоната марганца, состав которого можно представить, как $Mn(OH)_2 \cdot xMnCO_3$. В условии задачи отмечено, что газ в этой реакции не выделялся, а это означает, что гидролиз по аниону CO_3^{2-} прошел только по первой ступени и образовался растворимый кислый карбонат:

$$(x + 2)$$
MnCl₂ + $(x + 2)$ Na₂CO₃ + 2H₂O \rightarrow Mn(OH)₂· x MnCO₃ \downarrow + Mn(HCO₃)₂ + 2 $(x + 1)$ NaCl.

По условию задачи, массовая доля марганца в осадке основного карбоната составляет 0.497. Тогда

$$0.497 = \frac{55(x+1)}{55(x+1) + 34 + 60x},$$

отсюда x = 5. Состав осадка $\mathbf{B} - \text{Mn}(\text{OH})_2 \cdot 5\text{MnCO}_3$. При растворении основного карбоната марганца в серной кислоте образуется раствор сульфата марганца(II):

$$Mn(OH)_2 \cdot 5MnCO_3 + 6H_2SO_4 \rightarrow 6MnSO_4 + 5CO_2\uparrow + 7H_2O$$
.

При добавлении к раствору сульфата марганца(II) пероксодисульфата аммония (в присутствии нитрата серебра как катализатора) образуется фиолетово-малиновый раствор, окраску которому придают ионы MnO_4^- :

$$2MnSO_4 + 5(NH_4)_2S_2O_8 + 8H_2O \rightarrow 2HMnO_4 + 5(NH_4)_2SO_4 + 7H_2SO_4.$$

Соединение \mathbf{C} – \mathbf{HMnO}_4 .

Omeem: $\mathbf{A} - \text{MnO}_2$, $\mathbf{B} - \text{Mn(OH)}_2 \cdot 5 \text{MnCO}_3$, $\mathbf{C} - \text{HMnO}_4$.

ЗАДАНИЕ 10

10.1. Углеводород массой 4.48 г при бромировании дал одно монобромпроизводное массой 7.64 г, которое обработали спиртовым раствором щелочи, а затем – подкисленным раствором перманганата калия. Образовалось соединение **X**, при действии на него избытка иода в щелочной среде выпало 31.52 г светло-желтого осадка, который отделили. Рассчитайте максимальную массу бромэтана, способного вступить в реакцию с органическим соединением неразветвлённого строения, содержащимся в маточном растворе. Определите все неизвестные вещества и напишите уравнения всех упомянутых реакций. **(16 баллов)**

Решение. Поскольку бромировании образовалось монобромпроизводное, то, скорее всего, речь идёт о радикальном замещении в ряду насыщенных углеводородов:

$$C_xH_v + Br_2 \rightarrow C_xH_{v-1}Br + HBr.$$

Зная массы исходного углеводорода и бромпроизводного, можно приравнять их количества вещества:

$$\frac{4.48}{12x+y} = \frac{7.64}{12x+y-1+80} \ .$$

После подстановки 12x+y=z получаем z=112. Такая масса соответствует x=8, y=16. Следовательно, искомый углеводород – циклоалкан C_8H_{16} в количестве

$$v(C_8H_{16}) = 4.48 / 112 = 0.04$$
 моль.

При дегидробромировании бромпроизводного был получен циклический алкен, при жёстком окислении которого образовалось соединение \mathbf{X} , вступившее далее в галоформную реакцию. Из условий задачи можно рассчитать количество вещества иодоформа (светложелтый осадок):

$$v(CHI_3) = 31.52 / 394 = 0.08 \text{ моль},$$

что в два раза больше количества вещества исходного углеводорода, следовательно, продукт окисления циклоалкена может вступить в галоформную реакцию дважды. Поскольку в маточном растворе осталось органическое соединение неразветвлённого строения, то единственный вариант исходного циклоалкана – это 1,2-диметилциклогексан:

$$CH_3$$
 + Br_2 — P - CH_3 + P - CH_3 + P - CH_3 + P - CH_3 + P - P

Уравнение реакции окисления:

5 CH₃ O O O
$$\parallel$$
 \parallel \parallel SO₄ + 4KMnO₄ + 6H₂SO₄ \longrightarrow 5 H₃CC(CH₂)₄CCH₃ + 4MnSO₄ + 2K₂SO₄ + 6H₂O

Галоформная реакция (качественная реакция на метилкетоны):

Уравнение взаимодействия продукта с бромэтаном:

Масса бромэтана составляет:

$$m(C_2H_5Br) = 2 \cdot 0.04 \cdot 109 = 8.72 \text{ }\Gamma.$$

Ответ: 8.72 г.

10.2. Углеводород массой 4.90 г при бромировании дал одно монобромпроизводное массой 8.85 г, которое обработали спиртовым раствором щелочи, а затем – подкисленным раствором перманганата калия. Образовалось соединение Y, при действии на него избытка иода в щелочной среде выпало 19.7 г светло-желтого осадка. Маточный раствор, содержащий органическое соединение с неразветвлённым углеродным скелетом, обработали избытком нитрата бария, полученный осадок отфильтровали, высушили и прокалили. Рассчитайте массу органического соединения, полученного при прокаливании. Определите все неизвестные вещества и напишите уравнения всех упомянутых реакций. (16 баллов)

Решение. Поскольку бромировании образовалось монобромпроизводное, то, скорее всего, речь идёт о радикальном замещении в ряду насыщенных углеводородов:

$$C_xH_v + Br_2 \rightarrow C_xH_{v-1}Br + HBr.$$

Зная массы исходного углеводорода и бромпроизводного, можно приравнять их количества вещества:

$$\frac{4.90}{12x+y} = \frac{8.85}{12x+y-1+80} \ .$$

После подстановки 12x + y = z получаем z = 98. Такая масса соответствует x = 7, y = 14. Следовательно, искомый углеводород – циклоалкан C_7H_{14} в количестве $v(C_7H_{14}) = 4.90 / 98 = 0.05$ моль.

При дегидробромировании бромпроизводного был получен циклический алкен, при жёстком окислении которого образовалось соединение \mathbf{X} , вступившее далее в галоформную реакцию. Из условий задачи можно рассчитать количество вещества иодоформа (светложелтый осадок):

$$v(CHI_3) = 19.7 / 394 = 0.05 \text{ моль},$$

что соответствует количеству вещества исходного углеводорода, следовательно, продукт окисления циклоалкена может вступать в галоформную реакцию. Поскольку в маточном растворе осталось органическое соединение неразветвлённого строения, то единственный вариант исходного циклоалкана – это метилциклогексан:

$$CH_3$$
 + Br_2 — Br + HBr — CH_3 — $CH_$

Уравнение реакции окисления:

Галоформная реакция (качественная реакция на метилкетоны):

Уравнение взаимодействия с нитратом бария:

Дальнейшее прокаливание осадка:

$$(H_2C)_4 \longrightarrow O + BaCO_3$$

$$O \longrightarrow O$$

Расчёт массы полученного циклопентанона:

$$m = 0.05 \cdot 84 = 4.2 \text{ }\Gamma.$$

Ответ: 4.2 г.

10.3. Углеводород массой 2.94 г при бромировании дал одно монобромпроизводное массой 5.31 г, которое обработали спиртовым раствором щелочи, а затем – подкисленным раствором дихромата калия. Образовалось соединение **X**, при действии на него избытка иода в щелочной среде выпало 23.64 г светло-желтого осадка, который отделили. Маточный раствор, содержащий органическое соединение неразветвлённого строения, подкислили и выделили органическое соединение, которое при нагревании до 250°C превращается в

соединение **Z**. Рассчитайте массу соединения **Z**, определите все неизвестные вещества и напишите уравнения всех упомянутых реакций. (16 баллов)

Решение. Поскольку бромировании образовалось монобромпроизводное, то, скорее всего, речь идёт о радикальном замещении в ряду насыщенных углеводородов:

$$C_xH_y + Br_2 \rightarrow C_xH_{y-1}Br + HBr.$$

Зная массы исходного углеводорода и бромпроизводного, можно приравнять их количества вещества:

$$\frac{2.94}{12x+y} = \frac{5.31}{12x+y-1+80} \ .$$

После подстановки 12x + y = z получаем z = 98. Такая масса соответствует x = 7, y = 14. Следовательно, искомый углеводород – циклоалкан C_7H_{14} в количестве

$$v(C_7H_{14}) = 2.94 / 98 = 0.03$$
 моль.

При дегидробромировании бромпроизводного был получен циклический алкен, при жёстком окислении которого образовалось соединение \mathbf{X} , вступившее далее в галоформную реакцию. Из условий задачи можно рассчитать количество вещества иодоформа (светложелтый осадок):

$$v(CHI_3) = 23.64 / 394 = 0.06 \text{ моль},$$

что в два раза больше количества вещества исходного углеводорода, следовательно, продукт окисления циклоалкена может вступить в галоформную реакцию дважды. Поскольку в маточном растворе осталось органическое соединение неразветвлённого строения, то единственный вариант исходного циклоалкана — это 1,2-диметилциклопентан:

$$CH_3$$
 $+ Br_2$ \rightarrow CH_3 \rightarrow

Уравнение реакции окисления:

Галоформная реакция (качественная реакция на метилкетоны):

Уравнение реакции при подкислении:

$$\begin{array}{ccc}
O & O & O & O \\
\parallel & \parallel & \parallel & \parallel \\
KOC(CH_2)_3COK + 2HC1 & \longrightarrow & HOC(CH_2)_3COH + 2KC1
\end{array}$$

Нагревание глутаровой (пентандиовой) кислоты приводит к получению циклического ангидрида:

Расчёт массы ангидрида глутаровой кислоты:

$$m = 0.03 \cdot 114 = 3.42 \text{ }\Gamma.$$

Ответ: 3.42 г.

10.4. Углеводород массой 3.36 г при бромировании дал одно монобромпроизводное массой 6.52 г, которое обработали спиртовым раствором щелочи, а затем – подкисленным раствором перманганата калия. Образовалось соединение Y, при действии на него избытка иода в щелочной среде выпало 15.76 г светло-желтого осадка, который отделили. Рассчитайте максимальную массу 2-иодпропана, способного прореагировать с органическим соединением неразветвлённого строения, содержащимся в маточном растворе. Определите все неизвестные вещества и напишите уравнения всех упомянутых реакций. (16 баллов)

Решение. Поскольку бромировании образовалось монобромпроизводное, то, скорее всего, речь идёт о радикальном замещении в ряду насыщенных углеводородов:

$$C_xH_v + Br_2 \rightarrow C_xH_{v-1}Br + HBr$$
.

Зная массы исходного углеводорода и бромпроизводного, можно приравнять их количества вещества:

$$\frac{3.36}{12x+y} = \frac{6.52}{12x+y-1+80} \,.$$

После подстановки 12x + y = z получаем z = 84. Такая масса соответствует x = 6, y = 12. Следовательно, искомый углеводород – циклоалкан C_6H_{12} в количестве

$$v(C_6H_{12}) = 3.36 / 84 = 0.04 \text{ моль}.$$

При дегидробромировании бромпроизводного был получен циклический алкен, при жёстком окислении которого образовалось соединение \mathbf{X} , вступившее далее в галоформную реакцию. Из условий задачи можно рассчитать количество вещества иодоформа (светложелтый осадок):

$$v(CHI_3) = 15.76 / 394 = 0.04 \text{ моль},$$

что соответствует количеству вещества исходного углеводорода, следовательно, продукт окисления циклоалкена может вступать в галоформную реакцию. Поскольку в маточном растворе осталось органическое соединение неразветвлённого строения, то единственный вариант исходного циклоалкана — это метилциклопентан:

$$CH_3$$
 $+ Br_2$
 Br
 $+ HBr$
 CH_3
 Br
 $+ HBr$
 CH_3
 $+ NaOH$
 $+ NaBr + H_2O$

Уравнение реакции окисления:

$$5 \begin{array}{c} CH_{3} & O & O \\ + 6KMnO_{4} + 9H_{2}SO_{4} & \longrightarrow & 5 H_{3}CC(CH_{2})_{3}COH + 6MnSO_{4} + 3K_{2}SO_{4} + 9H_{2}O \end{array}$$

Галоформная реакция (качественная реакция на метилкетоны):

O O O O O
$$\parallel H_{3}CC(CH_{2})_{3}COH + 3I_{2} + 5KOH$$
 \longrightarrow CHI₃ + KOC(CH₂)₃COK + 3KI + 4H₂O

Уравнение взаимодействия с 2-иодпропаном:

Расчёт массы 2-иодпропана:

Ответ: 13.6 г.

Отборочный тур ДЕКАБРЬ, 10-11 классы

ЗАДАНИЕ 1

1.1. Запишите уравнение реакции, при помощи которой можно обнаружить в уксусной кислоте примесь муравьиной кислоты. Кратко опишите признаки протекания этой реакции.

(4 балла)

Решение. Обнаружить примесь муравьиной кислоты поможет реакция «серебряного зеркала», в которую вступает муравьиная кислота, но не вступает уксусная. Признаком протекания реакции является налет серебра на стенке пробирки:

$$\text{HCOOH} + 2[\text{Ag}(\text{NH}_3)_2]\text{OH} \xrightarrow{t^\circ} 2\text{Ag}\downarrow + \text{CO}_2\uparrow + 4\text{NH}_3 + 2\text{H}_2\text{O}.$$

1.2. Запишите уравнение реакции, при помощи которой можно обнаружить в этане примесь этилена. Кратко опишите признаки протекания этой реакции. (4 балла)

Решение. Обнаружить примесь этилена поможет реакция с бромной водой, в которую вступает этилен, но не вступает этан. Признаком протекания реакции является обесцвечивание бромной воды:

$$CH_2=CH_2+Br_2(водн.) \rightarrow CH_2Br-CH_2Br.$$

1.3. Запишите уравнение реакции, при помощи которой можно обнаружить в бутине-2 примесь бутина-1. Кратко опишите признаки протекания этой реакции. **(4 балла)**

Решение. Обнаружить примесь бутина-1 поможет реакция с аммиачным раствором оксида серебра, в которую вступает бутин-1, но не вступает бутин-2. Признаком протекания реакции является образование белого осадка:

$$CH_3CH_2C \equiv CH + [Ag(NH_3)_2]OH \rightarrow CH_3CH_2C \equiv CAg \downarrow + 2NH_3 + H_2O.$$

1.4. Запишите уравнение реакции, при помощи которой можно обнаружить в этане примесь пропина. Кратко опишите признаки протекания этой реакции. (4 балла)

Решение. Обнаружить примесь пропина поможет реакция с аммиачным раствором оксида серебра, в которую вступает пропин, но не вступает этан. Признаком протекания реакции является образование белого осадка:

$$CH_3C \equiv CH + [Ag(NH_3)_2]OH \rightarrow CH_3C \equiv CAg \downarrow + 2NH_3 + H_2O.$$

ЗАДАНИЕ 2

2.1. Определите общую формулу гомологического ряда, к которому принадлежит щавелевая кислота. **(4 балла)**

Решение. Щавелевая кислота С2Н2О4

Общая формула гомологического ряда — $C_nH_{2n-2}O_4$.

Ответ: $C_nH_{2n-2}O_4$.

2.2. Определите общую формулу гомологического ряда, к которому принадлежит молочная кислота. **(4 балла)**

Решение. Молочная кислота С₃Н₆О₃

Общая формула гомологического ряда – $C_nH_{2n}O_3$.

Ответ: $C_nH_{2n}O_3$.

2.3. Определите общую формулу гомологического ряда, к которому принадлежит пировиноградная кислота. (4 балла)

Решение. Пировиноградная кислота С₃Н₄О₃

Общая формула гомологического ряда — $C_nH_{2n-2}O_3$.

Ответ: $C_nH_{2n-2}O_3$.

2.4. Определите общую формулу гомологического ряда, к которому принадлежит салициловая кислота. **(4 балла)**

Решение. Салициловая кислота С7Н6О2

Общая формула гомологического ряда — $C_nH_{2n-8}O_3$.

Ответ: $C_nH_{2n-8}O_3$.

ЗАДАНИЕ 3

3.1. Смесь содержит кристаллические соли $MnSO_4 \cdot 5H_2O$ и $KAl(SO_4)_2 \cdot 12H_2O$. Предложите способ выделения из этой смеси марганца и алюминия в виде любых индивидуальных соединений. (8 баллов)

Решение. Растворим смесь в воде и обработаем раствор избытком раствора щелочи:

$$MnSO_4 + KOH(изб) \rightarrow Mn(OH)_2 \downarrow + K_2SO_4,$$

$$Al_2(SO_4)_3 + 8KOH(изб) \rightarrow 2K[Al(OH)_4] + 3K_2SO_4.$$

Гидроксид марганца $Mn(OH)_2$ – малорастворимое соединение (ПР = $1.9 \cdot 10^{-13}$), не проявляющее амфотерных свойств и поэтому не растворяющееся в избытке щелочи. Он

выпадет из раствора в виде светло-розового осадка. Алюминий останется в щелочном растворе в виде тетрагидроксоалюминат-иона. При пропускании в этот раствор тока углекислого газа выпадет белый осадок гидроксида алюминия Al(OH)₃:

$$K[Al(OH)_4] + CO_2 \rightarrow Al(OH)_3 \downarrow + KHCO_3$$

Этим способом можно выделить из исходной смеси марганец в виде $Mn(OH)_2$, алюминий – в виде $Al(OH)_3$.

3.2. Смесь содержит кристаллические соли $MgSO_4\cdot 7H_2O$ и $KCr(SO_4)_2\cdot 12H_2O$. Предложите способ выделения из этой смеси магния и хрома в виде любых индивидуальных соединений.

(8 баллов)

Решение. Растворим смесь в воде и обработаем раствор избытком раствора щелочи:

$$MgSO_4 + KOH(изб) \rightarrow Mg(OH)_2 \downarrow + K_2SO_4,$$

 $Cr_2(SO_4)_3 + 8KOH(изб) \rightarrow 2K[Cr(OH)_4] + 3K_2SO_4.$

Гидроксид магния $Mg(OH)_2$ — малорастворимое соединение ($\Pi P = 6.0 \cdot 10^{-10}$), не проявляющее амфотерных свойств и поэтому не растворяющееся в избытке щелочи. Он выпадет из раствора в виде белого осадка. Хром останется в щелочном растворе в виде тетрагидроксохромат-иона. При пропускании в этот раствор тока углекислого газа выпадет грязно-зеленый осадок гидроксида хрома $Cr(OH)_3$:

$$K[Cr(OH)_4] + CO_2 \rightarrow Cr(OH)_3 \downarrow + KHCO_3.$$

Этим способом можно выделить из исходной смеси магний в виде $Mg(OH)_2$, хром – в виде $Cr(OH)_3$.

3.3. Смесь содержит кристаллические соли $ZnSO_4 \cdot 7H_2O$ и $(NH_4)Fe(SO_4)_2 \cdot 12H_2O$. Предложите способ выделения из этой смеси цинка и железа в виде любых индивидуальных соединений.

(8 баллов)

Решение. Растворим смесь в воде и обработаем раствор избытком холодного раствора щелочи:

$$ZnSO_4 + 4KOH(изб) \rightarrow K_2[Zn(OH)_4] + K_2SO_4,$$

 $Fe_2(SO_4)_3 + 6KOH(изб) \rightarrow 2Fe(OH)_3 \downarrow + 3K_2SO_4.$

Гидроксид железа $Fe(OH)_3$ — малорастворимое соединение (ПР = $6.3 \cdot 10^{-38}$), не проявляющее амфотерных свойств (в обычных условиях) и поэтому не растворяющееся в избытке раствора холодной щелочи. Он выпадет из раствора в виде бурого осадка.

Цинк останется в щелочном растворе в виде тетрагидроксоцинкат-иона. При добавлении к этому раствору хлорида аммония выпадет белый осадок гидроксида цинка $Zn(OH)_2$:

$$K_2[Zn(OH)_4] + 2NH_4Cl \rightarrow Zn(OH)_2\downarrow + 2KCl + 2NH_3 + 2H_2O.$$

Если же пропустить в этот раствор ток углекислого газа, выпадет белый осадок основного карбоната цинка.

$$2K_2[Zn(OH)_4] + 5CO_2 \rightarrow Zn(OH)_2 \cdot ZnCO_3 \downarrow + 4KHCO_3 + H_2O.$$

Этим способом можно выделить из исходной смеси железо в виде $Fe(OH)_3$, цинк – в виде $Zn(OH)_2$ (или $Zn(OH)_2 \cdot ZnCO_3$).

3.4. Смесь содержит кристаллические соли $NiSO_4$: $7H_2O$ и $KAl(SO_4)_2$: $12H_2O$. Предложите способ выделения из этой смеси никеля и алюминия в виде любых индивидуальных соединений. (8 баллов)

Решение. Растворим смесь в воде и обработаем раствор избытком раствора щелочи:

$$\begin{split} \text{NiSO}_4 + \text{KOH}(\text{M36}) &\rightarrow \text{Ni(OH)}_2 \downarrow + \text{K}_2 \text{SO}_4, \\ \text{Al}_2(\text{SO}_4)_3 + 8 \text{KOH}(\text{M36}) &\rightarrow 2 \text{K}[\text{Al(OH)}_4] + 3 \text{K}_2 \text{SO}_4. \end{split}$$

Гидроксид никеля $Ni(OH)_2$ – малорастворимое соединение (ПР = $2.0 \cdot 10^{-15}$), не проявляющее амфотерных свойств и поэтому не растворяющееся в избытке щелочи. Он выпадет из раствора в виде светло-зеленого осадка.

Алюминий останется в щелочном растворе в виде тетрагидроксоалюминат-иона. При пропускании в этот раствор тока углекислого газа выпадет белый осадок гидроксида алюминия Al(OH)₃:

$$K[Al(OH)_4] + CO_2 \rightarrow Al(OH)_3 \downarrow + KHCO_3$$

Этим способом можно выделить из исходной смеси никель в виде Ni(OH)2, алюминий – в виде $Al(OH)_3$.

ЗАДАНИЕ 4

4.1. Смесь 5 г карбоната кальция и 1.06 г карбоната натрия поместили в 750 мл воды при 25°C. Определите массу ионов кальция в растворе над осадком после установления равновесия, если произведение растворимости CaCO₃ при данной температуре равно 3.8·10⁻⁹. (8 баллов)

Решение. Количество вещества хорошо растворимой соли равно

$$v(Na_2CO_3) = 1.06 / 106 = 0.01$$
 моль.

Пусть в раствор над осадком перешло x моль $CaCO_3$. Тогда равновесные концентрации Са²⁺ и карбонат-ионов составляют, соответственно

$$c(\text{Ca}^{2^+}) = x / 0.75 \text{ моль/л},$$

 $c(\text{CO}_3^{2^-}) = \frac{x + 0.01}{0.75} \text{ моль/л}.$

Произведение растворимости карбоната кальция равно

$$3.8 \cdot 10^{-9} = \frac{x}{0.75} \cdot \frac{x + 0.01}{0.75} = \frac{x^2 + 0.01x}{0.5625}.$$

Решение уравнения дает $x=2.1375\cdot 10^{-7}$ моль. Тогда $m(\mathrm{Ca}^{2^+})=\mathrm{v}\cdot M=2.1375\cdot 10^{-7}\cdot 40=8.5498\cdot 10^{-6}\ \mathrm{r}.$

$$m(\text{Ca}^{2+}) = v \cdot M = 2.1375 \cdot 10^{-7} \cdot 40 = 8.5498 \cdot 10^{-6} \text{ r}.$$

Ответ: $8.5498 \cdot 10^{-6}$ г ионов кальшия.

4.2. Навеску сульфата бария массой 5 г внесли в 500 мл раствора сульфата натрия с концентрацией 0.005 моль/л. Рассчитайте массу ионов бария в растворе над осадком после установления равновесия, если произведение растворимости BaSO₄ при температуре опыта равно $1.1 \cdot 10^{-10}$. (8 баллов)

Решение. Количество вещества Na₂SO₄ равно

$$v(Na_2SO_4) = c \cdot V = 0.005 \cdot 0.5 = 0.0025$$
 моль.

Обозначим за x количество вещества ионов Ba^{2+} в растворе после установления равновесия. Тогда равновесные концентрации ионов Ba2+ и сульфат-ионов составляют, соответственно

$$c(\mathrm{Ba}^{2^+}) = x / 0.5 \text{ моль/л},$$

 $c(\mathrm{SO_4}^{2^-}) = \frac{x + 0.0025}{0.5} \text{ моль/л}.$

Произведение растворимости сульфата бария равно

$$1.1 \cdot 10^{-10} = \frac{x}{0.5} \cdot \frac{x + 0.0025}{0.5} = \frac{x^2 + 0.0025x}{0.25}.$$

Решение уравнения дает $x = 1.1 \cdot 10^{-8}$ моль.

$$m(Ba^{2+}) = 1.1 \cdot 10^{-8} \cdot 137 = 1.51 \cdot 10^{-6} \, \Gamma.$$

Ответ: 1.51·10⁻⁶ г.

4.3. Навеску бромида серебра массой 2 г внесли в 400 мл раствора бромида натрия с концентрацией 0.002 моль/л. Рассчитайте равновесную концентрацию ионов серебра в растворе над осадком, если произведение растворимости бромида серебра при температуре опыта равно $5.3 \cdot 10^{-13}$. (8 баллов)

Решение. Количество вещества NaBr в растворе равно

$$v(NaBr) = c \cdot V = 0.002 \cdot 0.8 = 8.10^{-4} \text{ моль}.$$

Обозначим за x количество вещества ионов Ag^+ в растворе после установления равновесия. Тогда равновесные концентрации ионов Ag⁺ и бромид-ионов составляют, соответственно

$$c(Ag^+) = x / 0.4$$
 моль/л,
 $c(Br^-) = \frac{x + 8 \cdot 10^{-4}}{0.4}$ моль/л.

Произведение растворимости бромида серебра равно

$$5.3 \cdot 10^{-13} = \frac{x}{0.4} \cdot \frac{x + 8 \cdot 10^{-4}}{0.4} = \frac{x^2 + 8 \cdot 10^{-4} x}{0.16}.$$

0.4 0.4 0.10 Решение уравнения дает $x = 1.06 \cdot 10^{-10}$ моль. Концентрация ионов серебра в растворе:

$$c(Ag^+) = \frac{1.06 \cdot 10^{-10}}{0.4} = 2.65 \cdot 10^{-10} \text{ моль/л.}$$

Ответ: $2.65 \cdot 10^{-10}$ моль/л.

4.4. К 400 мл насыщенного при 25°C раствора MgCO₃, находящегося в равновесии со своим осадком, прилили 95 мл 2%-ного раствора карбоната калия с плотностью 1.02 г/мл. Рассчитайте концентрацию ионов Mg^{2+} в растворе над осадком, если при данной температуре произведение растворимости $MgCO_3$ равно $2.1 \cdot 10^{-5}$. (8 баллов)

Решение. Найдем количество вещества карбоната калия:

$$\nu(\text{K}_2\text{CO}_3) = \frac{95 \cdot 1.02 \cdot 0.02}{138} = 0.014 \text{ моль.}$$

 $\nu({\rm K_2CO_3}) = \frac{95 \cdot 1.02 \cdot 0.02}{138} = 0.014 \ {\rm моль}.$ В растворе при равновесии находится x моль ${\rm Mg}^{2^+}$ и (x+0.014) моль карбонат-ионов. Объем раствора равен

$$V = 0.4 + 0.095 = 0.495 \text{ л.}$$

Произведение растворимости карбоната магния равно

$$2.1 \cdot 10^{-5} = \frac{x}{0.495} \cdot \frac{x + 0.014}{0.495} \, .$$

Решение уравнения дает $x = 3.584 \cdot 10^{-4}$ моль. Концентрация ионов магния в растворе: $c(\mathrm{Mg}^{2^+}) = x \ / \ V = 3.584 \cdot 10^{-4} \ / \ 0.495 = 7.24 \cdot 10^{-4}$ моль/л.

Ответ: $7.24 \cdot 10^{-4}$ моль/л.

ЗАДАНИЕ 5

5.1. Вычислите относительную атомную массу изотопа ⁸⁶Kr. При расчете используйте следующие данные: массы нейтрона, протона и электрона равны 1.00866, 1.00728 и 0.0005486 а.е.м. соответственно; 1 а.е.м. = $1.66057 \cdot 10^{-24}$ г; энергия образования ядер ⁸⁶Kr из нуклонов составляет 7.237928·10¹³ Дж/моль.

Решение. Масса изотопа равняется сумме масс всех протонов, нейтронов и электронов за вычетом дефекта массы. В атоме изотопа ⁸⁶Kr 36 протонов, 50 нейтронов и 36 электронов.

$$A_r(^{86}Kr) = 36 \cdot 1.00728 + 50 \cdot 1.00866 + 36 \cdot 0.0005486 - \Delta m$$

Рассчитаем дефект массы. По уравнению Эйнштейна

$$\Delta E = m \cdot c^2$$

где c — скорость света, $c = 3 \cdot 10^8$ м/с, E — энергия образования одного ядра криптона.

$$E = 7.237928 \cdot 10^{13} / 6.022 \cdot 10^{23} = 1.20191426 \cdot 10^{-10}$$
 Дж;

$$\Delta m = E / c^2 = 1.33546 \cdot 10^{-27} \text{ kg} = 0.80422 \text{ a.e.m.}$$

 $A_r(^{86}Kr) = 85.91061 \text{ a.e.m.}$

Ответ: 85.91061 а.е.м.

5.2. Вычислите относительную атомную массу изотопа ⁵⁸ Fe. При расчете используйте следующие данные: массы нейтрона, протона и электрона равны 1.00866 и 1.00728 и 0.0005486 а.е.м. соответственно; 1 а.е.м. = $1.66057 \cdot 10^{-24}$ г; энергия образования ядер ⁵⁸ Fe из нуклонов составляет 4.926562·10¹³ Дж/моль. (8 баллов)

Решение. Масса изотопа равняется сумме масс всех протонов, нейтронов и электронов за вычетом дефекта массы. В атоме изотопа ⁵⁸Fe 26 протонов, 32 нейтрона и 26 электронов.

$$A_r(^{58}\text{Fe}) = 26 \cdot 1.00728 + 32 \cdot 1.00866 + 26 \cdot 0.000549 - \Delta m.$$

Рассчитаем дефект массы. По уравнению Эйнштейна

$$E = m \cdot c^2$$

где c – скорость света, $c = 3 \cdot 10^8$ м/с, E – энергия образования одного ядра железа.

$$E = 4.926562 \cdot 10^{13} / 6.022 \cdot 10^{23} = 0.818094 \cdot 10^{-10}$$
Дж;

$$\Delta m = E / c^2 = 0.9089933 \cdot 10^{-27} \text{ K} \Gamma = 0.547398 \text{ a.e.m.}$$

$$A_r(^{58}\text{Fe}) = 57.9333 \text{ a.e.m.}$$

Ответ: 57.9333 а.е.м.

5.3. Вычислите относительную атомную массу изотопа ¹⁰⁴Pd. При расчете используйте следующие данные: массы нейтрона, протона и электрона равны 1.00866 и 1.00728 и 0.0005486 а.е.м. соответственно; 1 а.е.м. = $1.66057 \cdot 10^{-24}$ г; энергия образования ядер 104 Pd из нуклонов составляет $8.625415 \cdot 10^{13}$ Дж/моль. (8 баллов)

Решение. Масса изотопа равняется сумме масс всех протонов, нейтронов и электронов за вычетом дефекта массы. В атоме изотопа ¹⁰⁴Pd 46 протонов, 58 нейтронов и 46 электронов.

$$A_r(^{104}Pd) = 46 \cdot 1.00728 + 58 \cdot 1.00866 + 46 \cdot 0.000549 - \Delta m;$$

Рассчитаем дефект массы. По уравнению Эйнштейна

$$E = m \cdot c^2$$

где c – скорость света, $c = 3 \cdot 10^8$ м/с, E – энергия образования одного ядра палладия.

$$E = 8.625415 \cdot 10^{13} / 6.022 \cdot 10^{23} = 1.4323174 \cdot 10^{-10}$$
 Дж;

$$\Delta m = E / c^2 = 1.5914638 \cdot 10^{-27} \text{ (KG)} = 0.958384 \text{ a.e.m.}$$

$$A_r(^{104}Pd) = 103.9041$$
 a.e.m.

Ответ: 103.9041 а.е.м.

5.4. Вычислите относительную атомную массу изотопа ¹¹²Sn. При расчете используйте следующие данные: массы нейтрона, протона и электрона равны 1.00866 и 1.00728 и 0.0005486 а.е.м. соответственно; 1 а.е.м. = $1.66057 \cdot 10^{-24}$ г; энергия образования ядер ¹¹²Sn из нуклонов составляет $9.21237 \cdot 10^{13}$ Дж/моль. (8 баллов)

Решение. Масса изотопа равняется сумме масс всех протонов, нейтронов и электронов за вычетом дефекта массы. В атоме изотопа ¹¹²Sn 50 протонов, 62 нейтрона и 50 электронов.

$$A_r(^{112}Sn) = 50 \cdot 1.00728 + 62 \cdot 1.00866 + 50 \cdot 0.000549 - \Delta m;$$

Рассчитаем дефект массы. По уравнению Эйнштейна

$$E = m \cdot c^2$$

где c – скорость света, $c=3\cdot10^8$ м/с, E – энергия образования одного ядра олова. $E=9.21237\cdot10^{13} / 6.022\cdot10^{23}=1.529786\cdot10^{-10}$ Дж;

$$E = 9.21237 \cdot 10^{13} / 6.022 \cdot 10^{23} = 1.529786 \cdot 10^{-10}$$
Дж

$$\Delta m = E/c^2 = 1.699762 \cdot 10^{-27} \text{ (kr)} = 1.0236015 \text{ a.e.m.}$$

$$A_r(^{112}Sn) = 111.9048 \text{ a.e.m.}$$

Ответ: 111.9048 а.е.м.

ЗАДАНИЕ 6

6.1. При н.у. шарик радиусом 15 см, наполненный смесью двух газов, завис в воздухе на некоторой высоте. Оболочка шарика выполнена из нерастяжимого материала, 1 м² которого весит $1.65 \cdot 10^{-2}$ кг. Парциальное давление одного из газов в смеси составляет 20265 Па, этот газ в 6.5 раз легче второго. Плотность воздуха на высоте зависания шарика равна 1.2946 кг/м³. Определите неизвестные газы. (12 баллов)

Решение. Поскольку шарик завис в воздухе, сила Архимеда и сила тяжести, действующие на него, стали равны друг другу. То есть

$$m(\text{воздуха})\cdot g = (m(\text{смеси}) + m(\text{оболочки}))\cdot g.$$

Для расчета масс газов требуется объем шара, а для расчета массы оболочки шарика необходима площадь поверхности шара:

$$V(\text{шара}) = \frac{4\pi r^3}{3}$$
; $S(\text{шара}) = 4\pi r^2$.

$$m$$
(оболочки) = $m \cdot 4\pi r^2$,

где m – масса 1 м^2 оболочки. Подставим в основную формулу:

$$\rho$$
(воздуха)· $\frac{4\pi r^3}{3} \cdot g = (\rho(\text{смеси}) \cdot \frac{4\pi r^3}{3} + m \cdot 4\pi r^2) \cdot g$.

После упрощения получаем:

$$\rho$$
(воздуха)· $\frac{r}{3} = \rho$ (смеси)· $\frac{r}{3} + m$.

Можно выразить и рассчитать плотность газовой смеси:

$$\rho$$
(смеси) = ρ (воздуха) $-\frac{3m}{r}$ = 1.2946 $-3\cdot1.65\cdot10^{-2}$ / 0.15 = 0.9646 кг/м³.

Из уравнения Менделеева-Клапейрона выразим и рассчитаем среднюю молярную массу газовой смеси:

$$M$$
(смеси) = $\frac{\rho RT}{p} = \frac{0.9646 \cdot 8.314 \cdot 273}{101325} = 0.0216$ кг/моль = 21.6 г/моль.

Мольная доля первого газа в соответствии с законом Дальтона равна

$$x_1 = p_1 / p(\text{смеси}) = 20265 / 101325 = 0.2,$$

тогда мольная доля второго — $x_2 = 0.8$.

Средняя молярная масса газовой смеси равна

$$M(\text{смеси}) = M_1 \cdot x_1 + M_2 \cdot x_2 = M_1 \cdot x_1 + 6.5M_1 \cdot x_2 = M_1 \cdot 0.2 + 6.5M_1 \cdot 0.8 = 5.4 \cdot M_1,$$

$$5.4 \cdot M_1 = 21.6$$
.

Отсюда $M_1 = 4$ г/моль, значит, этот газ – гелий.

$$M_2 = 4 \cdot 6.5 = 26$$
 г/моль,

что отвечает ацетилену.

Ответ: Не и С₂Н₂.

6.2. При н.у. шарик радиусом 15 см, наполненный смесью двух газов, завис в воздухе на некоторой высоте. Оболочка шарика выполнена из нерастяжимого материала, 1 м^2 которого весит $8.49 \cdot 10^{-3}$ кг. Один из газов в полтора раза легче другого, является простым веществом и содержится в газовой смеси в количестве 0.303 моль. Плотность воздуха на высоте зависания шарика равна 1.2946 кг/м^3 . Определите неизвестные газы. (12 баллов)

Решение. Поскольку шарик завис в воздухе, сила Архимеда и сила тяжести, действующие на него, стали равны друг другу. То есть

$$m$$
(воздуха) $\cdot g = (m(\text{смеси}) + m(\text{оболочки}))\cdot g$.

Для расчета масс газов требуется объем шара, а для расчета массы оболочки шарика необходима площадь поверхности шара:

$$V(\text{mapa}) = \frac{4\pi r^3}{3}$$
; $S(\text{mapa}) = 4\pi r^2$.

$$m$$
(оболочки) = $m \cdot 4\pi r^2$,

где m — масса 1 м^2 оболочки. Подставим в основную формулу:

$$\rho$$
(воздуха)· $\frac{4\pi r^3}{3}$ · $g = (\rho(\text{смеси}) \cdot \frac{4\pi r^3}{3} + m \cdot 4\pi r^2)$ · g .

После упрощения получаем:

$$\rho$$
(воздуха) $\cdot \frac{r}{3} = \rho$ (смеси) $\cdot \frac{r}{3} + m$.

Можно выразить и рассчитать плотность газовой смеси:

$$\rho$$
(смеси) = ρ (воздуха) - $\frac{3m}{r}$ = 1.2946 - 3·8.49·10⁻³ / 0.15 = 1.1248 кг/м³.

Из уравнения Менделеева-Клапейрона выразим и рассчитаем среднюю молярную массу газовой смеси:

$$M$$
(смеси) = $\frac{\rho RT}{\rho} = \frac{1.1248 \cdot 8.314 \cdot 273}{101325} = 0.0252$ кг/моль = 25.2 г/моль.

Найдем количество вещества смеси:

$$V(\text{шара}) = \frac{4\pi r^3}{3} = \frac{4 \cdot 3.14 \cdot 0.15^3}{3} = 0.01413 \text{ м}^3 = 14.13 \text{ л},$$

$$v$$
(смеси) = $V / V_m = 14.13 / 22.4 = 0.6308$ моль.

Мольная доля первого газа равна

$$x_1 = 0.303 / 0.6308 = 0.48,$$

тогда мольная доля второго — $x_2 = 0.52$.

Средняя молярная масса газовой смеси равна

$$M$$
(смеси) = $M_1 \cdot x_1 + M_2 \cdot x_2 = M_1 \cdot x_1 + 6.5 M_1 \cdot x_2 = M_1 \cdot 0.48 + 1.5 M_1 \cdot 0.52 = 1.26 \cdot M_1$, $1.26 \cdot M_1 = 25.2$.

Отсюда $M_1 = 20$ г/моль, значит, этот газ — неон (простое вещество; HF не подходит, тем более, что при н.у. фтороводород — жидкость).

$$M_2 = 20 \cdot 1.5 = 30$$
 г/моль,

что отвечает этану.

Ответ: Ne и C₂H₆.

6.3. При н.у. шарик радиусом 12 см, наполненный смесью двух газов, завис в воздухе на некоторой высоте. Оболочка шарика выполнена из нерастяжимого материала, 1 м^2 которого весит $1.25 \cdot 10^{-2}$ кг. Парциальное давление одного из газов составляет 25331 Па, этот газ в 1.4 раза тяжелее другого. Оба газа – простые вещества. Плотность воздуха на высоте зависания шарика равна 1.2946 кг/м³. Определите неизвестные газы. (12 баллов)

Решение. Поскольку шарик завис в воздухе, сила Архимеда и сила тяжести, действующие на него, стали равны друг другу. То есть

$$m$$
(воздуха) $\cdot g = (m(\text{смеси}) + m(\text{оболочки}))\cdot g$.

Для расчета масс газов требуется объем шара, а для расчета массы оболочки шарика необходима площадь поверхности шара:

$$V(\text{mapa}) = \frac{4\pi r^3}{3}$$
; $S(\text{mapa}) = 4\pi r^2$.

$$m$$
(оболочки) = $m \cdot 4\pi r^2$,

где m — масса 1 м^2 оболочки. Подставим в основную формулу:

$$\rho(\text{воздуха}) \cdot \frac{4\pi r^3}{3} \cdot g = (\rho(\text{смеси}) \cdot \frac{4\pi r^3}{3} + m \cdot 4\pi r^2) \cdot g.$$

После упрощения получаем:

$$\rho$$
(воздуха)· $\frac{r}{3} = \rho$ (смеси)· $\frac{r}{3} + m$.

Можно выразить и рассчитать плотность газовой смеси:

$$\rho$$
(смеси) = ρ (воздуха) - $\frac{3m}{r}$ = 1.2946 - 3 · 1.25·10⁻² / 0.12 = 0.9821 кг/м³.

Из уравнения Менделеева-Клапейрона выразим и рассчитаем среднюю молярную массу газовой смеси:

$$M$$
(смеси) = $\frac{\rho RT}{p} = \frac{0.9821 \cdot 8.314 \cdot 273}{101325} = 0.0220$ кг/моль = 22.0 г/моль.

Мольная доля первого газа в соответствии с законом Дальтона равна

$$x_1 = p_1 / p(\text{смеси}) = 25331 / 101325 = 0.25,$$

тогда мольная доля второго — $x_2 = 0.75$.

Средняя молярная масса газовой смеси равна

$$M$$
(смеси) = $M_1 \cdot x_1 + M_2 \cdot x_2 = 1.4M_2 \cdot 0.25 + M_2 \cdot 0.75 = 1.10 \cdot M_2$, $1.1 \cdot M_2 = 22.0$.

Отсюда $M_2 = 20$ г/моль, значит, этот газ — неон (простое вещество; HF не подходит, тем более, что при н.у. фтороводород — жидкость).

$$M_1 = 20 \cdot 1.4 = 28 \ \Gamma/\text{моль},$$

что отвечает азоту (простое вещество, С₂Н₄ не подходит).

Ответ: Не и №.

6.4. При н.у. шарик радиусом 18 см, наполненный смесью двух газов, завис в воздухе на некоторой высоте. Оболочка шарика выполнена из нерастяжимого материала, 1 м^2 которого весит $9.1 \cdot 10^{-3}$ кг. Один из газов в 7 раза тяжелее другого и содержится в газовой смеси в количестве 0.981 моль. Только один из газов является простым веществом. Плотность воздуха на высоте зависания шарика равна 1.2946 кг/м^3 . Определите неизвестные газы.

(12 баллов)

Решение. Поскольку шарик завис в воздухе, сила Архимеда и сила тяжести, действующие на него, стали равны друг другу. То есть

$$m(\text{воздуха})\cdot g = (m(\text{смеси}) + m(\text{оболочки}))\cdot g.$$

Для расчета масс газов требуется объем шара, а для расчета массы оболочки шарика необходима площадь поверхности шара:

$$V(\text{mapa}) = \frac{4\pi r^3}{3}$$
; $S(\text{mapa}) = 4\pi r^2$.

$$m$$
(оболочки) = $m \cdot 4\pi r^2$,

где m — масса 1 м^2 оболочки. Подставим в основную формулу:

$$\rho$$
(воздуха)· $\frac{4\pi r^3}{3}$ · $g = (\rho(\text{смеси}) \cdot \frac{4\pi r^3}{3} + m \cdot 4\pi r^2)$ · g .

После упрощения получаем:

$$\rho$$
(воздуха)· $\frac{r}{3} = \rho$ (смеси)· $\frac{r}{3} + m$.

Можно выразить и рассчитать плотность газовой смеси:

$$\rho$$
(смеси) = ρ (воздуха) - $\frac{3m}{r}$ = 1.2946 - 3·9.1·10⁻³ / 0.18 = 1.1429 кг/м³.

Из уравнения Менделеева-Клапейрона выразим и рассчитаем среднюю молярную массу газовой смеси:

$$M$$
(смеси) = $\frac{\rho RT}{p} = \frac{1.1428 \cdot 8.314 \cdot 273}{101325} = 0.0256$ кг/моль = 25.6 г/моль.

Найдем количество вещества смеси:

$$V$$
(шара) = $\frac{4\pi r^3}{3}$ = $\frac{4 \cdot 3.14 \cdot 0.18^3}{3}$ = 0.02442 м³ = 24.42 л, v (смеси) = V / V_m = 24.42 / 22.4 = 1.090 моль.

Мольная доля первого газа равна

$$x_1 = 0.981 / 1.09 = 0.9$$
,

тогда мольная доля второго — $x_2 = 0.1$.

Средняя молярная масса газовой смеси равна

$$M$$
(смеси) = $M_1 \cdot x_1 + M_2 \cdot x_2 = 7M_2 \cdot x_1 + M_2 \cdot x_2 = 7M_2 \cdot 0.9 + M_2 \cdot 0.1 = 6.4 \cdot M_2$, 5.2· M_2 = 25.6.

Отсюда $M_2 = 4$ г/моль, значит, этот газ – гелий.

$$M_1 = 4 \cdot 7 = 28$$
 г/моль,

что отвечает азоту или этилену. Но, по условию, только один газ – простое вещество, поэтому второй газ – этилен.

Ответ: Не и С₂Н₄.

ЗАДАНИЕ 7

7.1. Простое вещество A подвергли высокотемпературному хлорированию, масса образовавшегося желтого вещества B оказалась больше массы исходного вещества A в 2.203 раза. При обработке водного раствора вещества B, имеющего зеленый цвет, раствором аммиака образовалось вещество C, придавшее раствору сине-фиолетовую окраску. Пропускание в раствор вещества C сероводорода привело к образованию черного осадка D. При добавлении к раствору вещества C иодида калия выпал светло-фиолетовый осадок E. Какое вещество образуется, если нагреть раствор вещества C с гипофосфитом натрия? Установите состав зашифрованных веществ, напишите уравнения всех упомянутых реакций.

(12 баллов)

Peшение. Можно предположить, что простое вещество A — переходный металл (его соединения имеют разнообразную окраску, он образует комплексное соединение с аммиаком). Цвета безводного хлорида, водного раствора хлорида, а также аммиачного комплекса этого металла указывают на никель (простое вещество A).

$$Ni + Cl_2 \xrightarrow{t^{\circ}} NiCl_2.$$

Проверим отношение масс:

$$M(NiCl_2) / M(Ni) = 130 / 59 = 2.203,$$

что соответствует условию задачи.

Цвет безводного хлорида никеля (вещества \mathbf{B}) — желтый, а водный раствор хлорида никеля имеет зеленую окраску. При добавлении к этому раствору аммиака образуется синефиолетовый аммиачный комплекс никеля(II) (вещество \mathbf{C}):

$$NiCl_2 + 6NH_3 \rightarrow [Ni(NH_3)_6]Cl_2$$
.

При пропускании в раствор хлорида гексамминникеля(II) сероводорода выпадает черный осадок сульфида никеля(II) (вещество \mathbf{D}):

$$[Ni(NH_3)_6]Cl_2 + 3H_2S \rightarrow NiS \downarrow + 2NH_4Cl + 2(NH_4)_2S.$$

При добавлении к раствору хлорида гексамминникеля(II) иодида калия выпадает светло-фиолетовый осадок малорастворимого иодида, образованного этим комплексным катионом (вещество \mathbf{E}):

$$[Ni(NH_3)_6]Cl_2 + 2KI \rightarrow [Ni(NH_3)_6]I_2\downarrow + 2KCl.$$

При нагревании раствора хлорида никеля с гипофосфитом натрия происходит восстановление никеля(Π) до металлического никеля (вещества \mathbf{A}):

$$NiCl_2 + NaH_2PO_2 + H_2O \xrightarrow{t^o} Ni \downarrow + H_3PO_3 + NaCl + HCl$$

или

$$2NiCl_2 + NaH_2PO_2 + 2H_2O \xrightarrow{t^o} 2Ni\downarrow + H_3PO_4 + NaCl + 3HCl.$$

Ответ: A - Ni, $B - NiCl_2$, $C - [Ni(NH_3)_6]Cl_2$, D - NiS, $E - [Ni(NH_3)_6]I_2$, образуется металлический никель.

7.2. Простое вещество **A** подвергли высокотемпературному хлорированию, масса образовавшегося голубого вещества **B** оказалась больше массы исходного вещества **A** в 2.203 раза. Пропускание газообразного аммиака над полученным веществом **B** при нагревании привело к образованию светло-красного вещества **C**. При обработке водного раствора вещества **B**, имеющего светло-розовый цвет, разбавленным раствором гидроксида калия выпал розовый осадок **D**, растворяющийся в избытке концентрированной соляной кислоты с образованием синего раствора вещества **E**. Какое вещество образуется, если обработать полученный осадок **D** концентрированным раствором гидроксида калия, и какова его окраска? Установите состав зашифрованных веществ и напишите уравнения всех упомянутых реакций. (12 баллов)

Pешение. Можно предположить, что простое вещество A — переходный металл (его соединения имеют разнообразную окраску, он образует комплексное соединение с аммиаком). Цвета безводного хлорида, водного раствора хлорида, а также аммиачного комплекса этого металла указывают на кобальт (простое вещество A).

Co + Cl₂
$$\xrightarrow{t^{o}}$$
 CoCl₂.
 $M_{CoCl2}/M_{Co} = 130 / 59 = 2.203$.

Это соответствует условию задачи.

Цвет безводного хлорида кобальта (вещества ${\bf B}$) — голубой. При пропускании над этим веществом газообразного аммиака образуется светло-красный аммиачный комплекс кобальта(II) (соединение ${\bf C}$):

$$CoCl_2 + 6NH_3 \rightarrow [Co(NH_3)_6]Cl_2$$
.

Водный раствор хлорида кобальта имеет светло-розовую окраску. При добавлении к нему раствора гидроксида калия выпадает розовый гидроксид кобальта(Π) (вещество \mathbf{D}):

$$CoCl_2 + 2KOH \rightarrow Co(OH)_2 \downarrow + 2KCl.$$

Растворение гидроксида кобальта(II) в концентрированной соляной кислоте приводит к образованию комплексного аниона синего цвета — тетрахлорокобальтата(II) ($H_2[CoCl_4]$ — вещество E):

$$Co(OH)_2 + 2HCl \rightarrow H_2[CoCl_4].$$

Растворение гидроксида кобальта(II) в концентрированном растворе гидроксида калия приводит к образованию тетрагидроксокобальтата(II) калия, раствор которого также имеет синий цвет:

$$Co(OH)_2 + 2KOH \rightarrow K_2[Co(OH)_4].$$

Ответ: **A** – Co, **B** – CoCl₂, **C** – [Co(NH₃)₆]Cl₂, **D** – Co(OH)₂, **E** – H₂[CoCl₄], образуется K_2 [Co(OH)₄] синего цвета.

7.3. Простое вещество **A** подвергли высокотемпературному хлорированию, масса образовавшегося темно-коричневого вещества **B** оказалась больше массы исходного вещества **A** в 2.11 раза. Водный раствор вещества **B**, имеющий зеленовато-синий цвет, обработали раствором аммиака. При этом образовалось вещество **C**, придавшее раствору ярко-синюю окраску. При пропускании в раствор вещества **C** сероводорода выпал черный осадок **D**, растворимый в горячей концентрированной азотной кислоте с образованием голубого раствора соединения **E**. Кристаллы какого вещества образуются, если в раствор вещества **B** добавить сульфат аммония, а затем охладить смесь? Какого они цвета? Установите состав зашифрованных веществ и напишите уравнения всех упомянутых реакций. (12 баллов)

Peшение. Можно предположить, что простое вещество A — переходный металл (его соединения имеют разнообразную окраску, он образует комплексное соединение с аммиаком). Цвета безводного хлорида, водного раствора хлорида, а также аммиачного комплекса этого металла указывают на медь (простое вещество A).

$$Cu + Cl_2 \xrightarrow{t^{\circ}} CuCl_2.$$

 $M(CuCl_2) / M(Cu) = 135 / 64 = 2.11,$

что соответствует условию задачи. Цвет безводного хлорида меди (вещества ${\bf B}$) — темнокоричневый, а водный раствор хлорида меди имеет зеленовато-синюю окраску. При добавлении к этому раствору аммиака образуется ярко-синий аммиачный комплекс меди(II) (соединение ${\bf C}$):

$$CuCl_2 + 4NH_3 \rightarrow [Cu(NH_3)_4]Cl_2$$
.

При пропускании в раствор хлорида тетрамминмеди(II) сероводорода выпадает черный осадок сульфида меди(II) (вещество \mathbf{D}):

$$[Cu(NH_3)_4]Cl_2 + 2H_2S \rightarrow CuS \downarrow + 2NH_4Cl + (NH_4)_2S.$$

Сульфид меди(II) растворяется в горячей концентрированной азотной кислоте ($Cu(NO_3)_2$ – вещество **E**):

$$CuS + 10HNO_3 \xrightarrow{t^{\circ}} Cu(NO_3)_2 + H_2SO_4 + 8NO_2 \uparrow + 4H_2O,$$

или можно записать $CuS + 8HNO_3 \xrightarrow{t^{\circ}} CuSO_4 + 8NO_2 \uparrow + 4H_2O$, тогда вещество **E** – сульфат меди $CuSO_4$.

При охлаждении раствора хлорида меди(II), содержащего сульфат аммония, происходит образование голубых кристаллов двойной соли меди и аммония (аналога соли Мора):

$$CuCl_2 + 2(NH_4)_2SO_4 + 6H_2O \rightarrow (NH_4)_2Cu(SO_4)_2 \cdot 6H_2O \downarrow + 2NH_4Cl.$$

Ответ: **A** − Cu, **B** − CuCl₂, **C** − [Cu(NH₃)₄]Cl₂, **D** − CuS, **E** − Cu(NO₃)₂, образуются кристаллы $(NH_4)_2$ Cu(SO₄)₂· $6H_2$ O голубого цвета.

7.4. Простое вещество **A** подвергли высокотемпературному хлорированию, масса образовавшегося бесцветного вещества **B** оказалась больше массы исходного вещества **A** в 1.63 раза. Бесцветный водный раствор вещества **B** обработали раствором щелочи. При этом образовался белый осадок **C**, хорошо растворимый в аммиаке с образованием вещества **D**. При пропускании в полученный аммиачный раствор сероводорода выпал желтый осадок **E**.

Какое вещество образуется при прокаливании белого осадка **С**? Какого оно цвета? Установите состав зашифрованных веществ и напишите уравнения всех упомянутых реакций. (12 баллов)

Решение. Можно предположить, что простое вещество \mathbf{A} – переходный металл кадмий. На это указывает характерный цвет сульфида, а также то, что его гидроксид легко растворяется в аммиаке с образованием аммиачного комплекса. Большая часть соединений кадмия не окрашена, он проявляет только одну устойчивую степень окисления +2, что связано с особенностями его электронного строения $(3d^{10})$.

$$Cd + Cl_2 \xrightarrow{t^{\circ}} CdCl_2$$
.
 $M_{CdCl2}/M_{Cd} = 183/112 \approx 1,63$.

Это соответствует условию задачи.

Безводный хлорид кадмия (вещество \mathbf{B}) бесцветен, водный раствор хлорида кадмия также не имеет окраски. При добавлении к раствору хлорида кадмия щелочи образуется белый осадок гидроксида кадмия (вещество \mathbf{C}):

$$CdCl_2 + 2KOH \rightarrow Cd(OH)_2 \downarrow + 2KCl.$$

Гидроксид кадмия легко растворяется в аммиаке, образуя бесцветный аммиачный комплекс $[Cd(NH_3)_4](OH)_2$ (вещество **D**):

$$Cd(OH)_2 + 4NH_3 \rightarrow [Cd(NH_3)_4](OH)_2$$
.

При пропускании в полученный аммиачный раствор сероводорода выпадает яркожелтый осадок сульфида кадмия (вещество ${\bf E}$):

$$[Cd(NH_3)_4](OH)_2 + 2H_2S \rightarrow CdS \downarrow + 2NH_3 + (NH_4)_2S + 2H_2O.$$

При прокаливании гидроксида кадмия образуется оксид, имеющий коричневый цвет:

$$Cd(OH)_2 \xrightarrow{t^o} CdO + H_2O.$$

Omsem: $\mathbf{A}-\mathrm{Cd}$, $\mathbf{B}-\mathrm{CdCl}_2$, $\mathbf{C}-\mathrm{Cd}(\mathrm{OH})_2$, $\mathbf{D}-[\mathrm{Cd}(\mathrm{NH}_3)_4](\mathrm{OH})_2$, $\mathbf{E}-\mathrm{CdS}$; образуется CdO коричневого цвета.

ЗАДАНИЕ 8

8.1. Запишите уравнения реакций, соответствующих следующей схеме превращений, укажите условия их протекания. Расшифруйте неизвестные вещества.

$$C_2H_2 \xrightarrow{\bullet} A \xrightarrow{\bullet} C_7H_8 \xrightarrow{\bullet} B \xrightarrow{KOH(BOJH, pa36)} C_7H_6O \xrightarrow{KOH(BOJH, KOHII)} C + D$$

После обработки C_7H_6O избытком концентрированного раствора щёлочи (реакция 5) была выделена эквимолярная смесь соединений C и D; водный раствор одного из них подвергли электролизу. Напишите уравнение электролиза, укажите процессы, протекающие на катоде и аноде. (12 баллов)

Решение.

1.
$$3C_2H_2$$

Cart

 $600 \, ^{\circ}C$

2. CH₃
 $+ \text{ CH}_3\text{Cl}$

CH₃
 $+ \text{ HCl}$

CHBr₂
 $+ \text{ 2HBr}$

4. CHBr₂

$$+ 2KOH$$

$$+ 2KBr + H2O$$

$$+ CHO$$

$$+ COOK$$

$$+ KOH$$

$$+ COOK$$

$$+ CH2OH$$

(реакция Канниццаро),

$$6.2$$
 + $2H_2O$ электролиз + $2KOH + 2CO_2 + H_2$

Процессы на электродах:

Ha катоде: $2H^+ + 2e$ → H_2

На аноде: $2C_6H_5$ –COO⁻ – 2e → C_6H_5 – C_6H_5 + $2CO_2$ ↑.

8.2. Запишите уравнения реакций, соответствующих следующей схеме превращений, укажите условия их протекания. Расшифруйте неизвестные вещества.

$$Al_4C_3 \xrightarrow{1} A \xrightarrow{2} C_2H_2 \xrightarrow{3} B \xrightarrow{CH_3COCl} C_8H_8O \xrightarrow{Br_2, KOH} C + D$$

После обработки C_8H_8O избытком брома в присутствии щёлочи (реакция 5) была выделена эквимолярная смесь соединений C и D; водный раствор одного из них подвергли электролизу. Напишите уравнение электролиза, укажите процессы, протекающие на катоде и аноде. (12 баллов)

Решение. 1) $Al_4C_3 + 12H_2O \rightarrow 3CH_4↑ + 4Al(OH)_3↓$

2)
$$2CH_4 \xrightarrow{1500^{\circ}C} C_2H_2 + 3H_2$$

3.
$$3C_2H_2 \xrightarrow{C_{akt}}$$

4.
$$\bigcirc$$
 + CH₃COCl \longrightarrow CCH₃ + HCl

5.
$$O$$
 CCH_3
 CCH_3
 COK
 COK

(галоформная реакция),

6.2 СООК +
$$2H_2O$$
 электролиз + $2KOH + 2CO_2 + H_2$

Процессы на электродах:

На катоде: $2H^+ + 2e$ → H_2

Ha аноде: $2C_6H_5$ –COO⁻ – 2e → C_6H_5 – C_6H_5 + $2CO_2$ ↑.

8.3. Запишите уравнения реакций, соответствующих следующей схеме превращений, укажите условия их протекания. Расшифруйте неизвестные вещества.

$$C_7H_8 \xrightarrow{1} A \xrightarrow{2} C_7H_8O \xrightarrow{3} B \xrightarrow{Br_2} C_7H_5BrO \xrightarrow{KOH(BOZH, KOHII)} C + D$$

После обработки C_7H_5 ВгО избытком концентрированного раствора щёлочи (реакция 5) была выделена эквимолярная смесь соединений C и D; водный раствор одного из них подвергли электролизу. Напишите уравнение электролиза, укажите процессы, протекающие на катоде и аноде. (12 баллов)

Решение.

1.
$$CH_3$$
 hv CH_2Br $+ Br_2$ CH_2Br $+ CH_2OH$

2.
$$CH_2Br$$
 $+ KOH$ H_2O $+ KBr$

3.
$$CH_2OH$$
 + CuO + Cu + H₂O

4.
$$\begin{array}{c|c} \text{CHO} & & \text{CHO} \\ + & \text{Br}_2 & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

(реакция Канниццаро),

$$6.2$$
 СООК + $2H_2O$ Электролиз + $2KOH + 2CO_2 + H_2$ Вг

Процессы на электродах:

Ha катоде: $2H^+ + 2e$ → H_2

Ha аноде: $2Br-C_6H_4-COO^--2e \rightarrow Br-C_6H_4-C_6H_4-Br+2CO_2↑$.

8.4. Запишите уравнения реакций, соответствующих следующей схеме превращений, укажите условия их протекания. Расшифруйте неизвестные вещества.

$$C_6H_6 \xrightarrow{1} A \xrightarrow{2} C_8H_8Br_2 \xrightarrow{3} B \xrightarrow{Br_2} C_8H_7OBr \xrightarrow{Br_2, KOH} C + D$$

После обработки С₈Н₈О избытком брома в присутствии щёлочи (реакция 5) была выделена эквимолярная смесь соединений С и D; водный раствор одного из них подвергли электролизу. Напишите уравнение электролиза, укажите процессы, протекающие на катоде и аноде. (12 баллов)

Решение.

Pewenue.

1.
$$H + C_2H_4 \longrightarrow H^+ \longrightarrow CH_2CH_3$$

2. $CH_2CH_3 \longrightarrow H_2O \longrightarrow H_2O$

(галоформная реакция).

Процессы на электродах:

Ha катоде: $2H^+ + 2e \rightarrow H_2$

На аноде: $2Br-C_6H_4-COO^--2e \rightarrow Br-C_6H_4-C_6H_4-Br+2CO_2↑$.

Уважаемые участники олимпиады! Нам известно, что в тексте четвертого варианта задачи 8, который был размещен на сайте для решения, имелась опечатка: условия реакции 4 и ее продукт были указаны неверно. Мы приводим решение правильной цепочки. Пожалуйста, не волнуйтесь — эту задачу мы проверим с особым вниманием и постараемся сделать так, чтобы потери участников из-за нее были минимальны. Приносим вам свои извинения!

ЗАДАНИЕ 9

9.1. Образец массой 136 г, содержащий черный сульфидный минерал MeCuS с примесью кварцевого песка, обработали горячей концентрированной азотной кислотой. К раствору, образовавшемуся после обработки кислотой, добавили избыток раствора хлорида натрия. При этом образовалось 71.75 г белого осадка, содержащего 75.26% металла Ме по массе. Белый осадок прокалили с карбонатом натрия при 900°С, образовавшийся твердый остаток промыли водой. Определите состав и массу вещества, оставшегося после промывания твердого остатка водой. Установите состав минерала и его содержание во взятом образце (в масс %). Напишите уравнения всех реакций. (16 баллов)

Решение. Кварцевый песок не реагирует с азотной кислотой. Взаимодействие минерала с кислотой можно представить следующим образом (предположим, что степень окисления металла **Me** не меняется, количество вещества минерала составляет х моль):

$$\mathbf{MeCuS} + 12HNO_3 \rightarrow \mathbf{MeNO}_3 + Cu(NO_3)_2 + H_2SO_4 + 9NO_2 \uparrow + 5H_2O.$$

Выпадение осадка после обработки раствором хлорида натрия возможно только в случае, если образуется нерастворимый в кислоте хлорид металла Ме:

$$MeNO_3 + NaCl \rightarrow MeCl \downarrow + NaNO_3.$$

По условию, в хлориде

$$\omega(\mathbf{Me}) = M / (M + 35.5) = 0.7526.$$

Значит, молярная масса металла $M=108\ {\rm г/моль},$ искомый металл — серебро, белый осадок — хлорид серебра, его количество составляет

$$x = v(AgCl) = 71.75 / 143.5 = 0.5$$
 моль.

Прокаливание хлорида серебра с карбонатом натрия:

$$4AgCl + 2Na2CO3 \xrightarrow{t^{\circ}} 4NaCl + 4Ag + 2CO2 \uparrow + O2 \uparrow.$$

При промывании водой твердого остатка после прокаливания хлорид натрия растворяется, остается только серебро. Масса серебра

$$m(Ag) = 0.5 \cdot 108 = 54 \text{ }\Gamma.$$

Минерал AgCuS – шромейерит, v(AgCuS) = x = 0.5 моль. Масса минерала

$$m = 0.5 \cdot 204 = 102 \text{ }\Gamma.$$

Содержание минерала в исходном образце

$$\omega = 102 / 136 = 0.75$$
 (или 75% по массе).

Ответ: Ag, 54 г, AgCuS, 75%.

9.2. Образец массой 159.5 г, содержащий черный сульфидный минерал Me_3CuS_2 с примесью кварцевого песка, обработали горячей концентрированной азотной кислотой. К раствору, образовавшемуся после обработки кислотой, добавили избыток раствора хлорида натрия. При этом образовалось 129.15 г белого осадка, содержащего 75.26% металла Me по массе. Белый осадок прокалили с оксидом бария при $400^{\circ}C$, образовавшийся твердый остаток промыли водой. Определите состав и массу вещества, оставшегося после промывания

твердого остатка водой. Установите состав минерала и его содержание во взятом образце (в масс %). Напишите уравнения всех реакций. (16 баллов)

Решение. Кварцевый песок не реагирует с азотной кислотой. Взаимодействие минерала с кислотой можно представить следующим образом (предположим, что степень окисления металла Me не меняется, количество вещества минерала составляет x моль):

$$Me_3CuS_2 + 22HNO_3 \rightarrow 3MeNO_3 + Cu(NO_3)_2 + 2H_2SO_4 + 17NO_2\uparrow + 9H_2O.$$

Выпадение осадка после обработки раствором хлорида натрия возможно только в случае, если образуется нерастворимый в кислоте хлорид металла Ме:

$$MeNO_3 + NaCl \rightarrow MeCl \downarrow + NaNO_3.$$

По условию, массовая доля металла в хлориде равна

$$\omega(\mathbf{Me}) = M / (M + 35.5) = 0.7526.$$

Значит, молярная масса металла M = 108 г/моль, металл – серебро, белый осадок – хлорид серебра, его количество

$$v(AgCl) = 129.15 / 143.5 = 3x = 0.9 моль.$$

Прокаливание хлорида серебра с оксидом бария:

$$4AgCl + 2BaO \xrightarrow{t^{\circ}} 2BaCl_2 + 4Ag + O_2 \uparrow.$$

$$0.9$$

При промывании водой твердого остатка после прокаливания хлорид бария растворяется, остается только серебро. Масса серебра составляет

$$m(Ag) = 0.9 \cdot 108 = 97.2 \text{ }\Gamma.$$

Минерал Ag_3CuS_2 – ялпаит, $v(Ag_3CuS_2) = x = 0.3$ моль. Масса минерала равна

$$m = 0.3 \cdot 452 = 135.6 \text{ }\Gamma.$$

Содержание минерала в исходном образце

$$\omega = 135.6 / 159.5 = 0.85$$
 (или 85% по массе).

Ответ: Ag, 97.2 г, Ag₃CuS₂, 85%.

9.3. Образец массой 99.5 г, содержащий черный сульфидный минерал MeCuS с примесью кварцевого песка, обработали горячей концентрированной азотной кислотой. К раствору, образовавшемуся после обработки кислотой, добавили избыток раствора хлорида натрия. При этом образовался белый осадок, содержащий 75.26% металла Ме по массе. Для полного растворения осадка потребовалось 400 мл раствора тиосульфата натрия с концентрацией 2 моль/л. Определите состав и массу белого осадка. Установите состав минерала и его содержание во взятом образце (в масс %). Напишите уравнения всех реакций.

Решение. Кварцевый песок не реагирует с азотной кислотой. Взаимодействие минерала с кислотой можно представить следующим образом (предположим, что степень окисления металла Me не меняется, количество вещества минерала составляет x моль):

$$\mathbf{MeCuS} + 12\mathbf{HNO}_3 \rightarrow \mathbf{MeNO}_3 + \mathbf{Cu(NO}_3)_2 + \mathbf{H}_2\mathbf{SO}_4 + 9\mathbf{NO}_2 \uparrow + 5\mathbf{H}_2\mathbf{O}.$$

Выпадение осадка после обработки раствором хлорида натрия возможно только в случае, если образуется нерастворимый в кислоте хлорид металла Ме:

$$MeNO_3 + NaCl \rightarrow MeCl \downarrow + NaNO_3.$$

$$x$$
 x

По условию, массовая доля металла в хлориде равна

$$\omega(Me) = M/(M+35.5) = 0.7526.$$

Значит, молярная масса металла M = 108 г/моль, металл – серебро, белый осадок – хлорид серебра. Растворение хлорида серебра в растворе тиосульфата натрия:

$$AgCl + 2Na_2S_2O_3 \rightarrow Na_3[Ag(S_2O_3)_2] + NaCl.$$

$$x \qquad 2x$$

Для растворения осадка потребовалось тиосульфата натрия

$$v = 2 \cdot 0.4 = 2x = 0.8$$
 моль, $v(AgCl) = x = 0.4$ моль.

Масса осадка хлорида серебра равна

$$m(AgCl) = 0.4 \cdot 108 = 43.2 \text{ r.}$$

Минерал AgCuS — шромейерит, v(AgCuS) = x = 0.4 моль. Масса минерала составляет $m = 0.4 \cdot 204 = 81.6 \text{ г.}$

Содержание его в образце

$$\omega = 81.6 / 99.5 = 0.82$$
 (или 82%).

Ответ: AgCl, 43.2 г, AgCuS, 82%.

9.4. Образец массой 50 г, содержащий черный сульфидный минерал Me_3CuS_2 с примесью кварцевого песка, обработали горячей концентрированной азотной кислотой. К раствору, образовавшемуся после обработки кислотой, добавили избыток раствора хлорида натрия. При этом образовался белый осадок, содержащий 75.26% металла Me по массе. Для полного растворения осадка потребовалось 500 мл раствора цианида калия с концентрацией 1.2 моль/л. Определите состав и массу белого осадка. Установите состав минерала и его содержание во взятом образце (в масс %). Напишите уравнения всех реакций. (16 баллов)

Pешение. Кварцевый песок не реагирует с азотной кислотой. Взаимодействие минерала с кислотой можно представить следующим образом (предположим, что степень окисления металла \mathbf{Me} не меняется, количество вещества минерала составляет x моль):

$$Me_3CuS_2 + 22HNO_3 \rightarrow 3MeNO_3 + Cu(NO_3)_2 + 2H_2SO_4 + 17NO_2\uparrow + 9H_2O.$$

Выпадение осадка после обработки раствором хлорида натрия возможно только в случае, если образуется нерастворимый в кислоте хлорид металла **Me**:

$$MeNO_3 + NaCl \rightarrow MeCl \downarrow + NaNO_3.$$
 $3x$

По условию задачи, массовая доля металла в осадке

$$\omega(\mathbf{Me}) = M / (M + 35.5) = 0.7526.$$

Значит, молярная масса металла M=108 г/моль, металл — серебро, белый осадок — хлорид серебра. Растворение хлорида серебра в растворе цианида калия:

$$AgCl + 2KCN \rightarrow K[Ag(CN)_2] + KCl.$$

$$3x \qquad 6x$$

Для растворения осадка потребовалось $1.2 \cdot 0.5 = 6x = 0.6$ моль цианида калия. Значит v(AgCl) = 3x = 0.3 моль.

Масса осадка хлорида серебра

$$m(AgCl) = 0.3 \cdot 143.5 = 43.05 \text{ }\Gamma.$$

Минерал $Ag_3CuS_2 - ялпаит$, $v(Ag_3CuS_2) = x = 0.1$ моль. Масса минерала составляет $m = 0.1 \cdot 452 = 45.2$ г.

Содержание его в образце равно

$$\omega = 45.2 / 50 = 0.904$$
 (или 90.4% по массе).

Ответ: AgCl, 43.05 г, Ag₃CuS₂, 90.4%.

ЗАДАНИЕ 10

10.1. В 1924 г. компания Dow Chemical разработала процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола, который в отсутствие катализатора протекает при 360-400°С и давлении свыше 300 атм. Рассчитайте выход продуктов монобромирования неизвестного монозамещённого циклического углеводорода в присутствии железа по каждому направлению, если известно, что массовая доля углерода в углеводороде составляет 91.30%, а при моногалогенировании и дальнейшем

нагревании до 380°C с 20%-ным раствором щёлочи при давлении 360 атм было выделено 3 изомера в молярном соотношении 1 : 5 : 4. Напишите уравнения протекающих реакций. (16 баллов)

Решение. Определим простейшую формулу неизвестного углеводорода С_хН_у:

$$x: y = \frac{91.30}{12}: \frac{8.70}{1} = 1: 1.143$$
 или $7: 8.$

Следовательно, неизвестный углеводород — толуол C_7H_8 . При каталитическом бромировании толуола образуется смесь *орто*- и *пара*-замещённых продуктов:

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline \\ + Br_2 & \hline \\ \end{array} + HBr \\ \hline \\ + HBr \\ \hline \\ Br \\ \end{array}$$

Обработка полученной смеси гидроксидом натрия приводит к образованию трех изомерных фенолятов:

То, что в каждой реакции образуются два продукта, объясняется протеканием процесса через стадию отщепления бромоводорода (образования дегидробензола) и последующее присоединение нуклеофила, что приводит к получению смеси двух региоизомеров в соотношении 1 : 1.

Очевидно, что при бромировании толуола продукт *орто*-замещения (2-бромтолуол) образуется в меньшем количестве, следовательно, в конечной реакционной смеси соль 2-метилфенола присутствует в наименьшем количестве, а в большем количестве — соль 3-метилфенола. Следовательно, соотношение количеств 2-бромтолуола и 4-бромтолуола составляет 1 : 4, выход реакции *орто*-замещения равен 20%, а реакции *пара*-замещения — 80%.

Ответ: орто-бромирование – 20%, пара-бромирование – 80%.

10.2. В 1924 г. компания Dow Chemical разработала процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола, который в отсутствие катализатора протекает при 360-400°С и давлении свыше 300 атм. Рассчитайте выход продуктов монобромирования неизвестного монозамещённого углеводорода в присутствии железа по каждому направлению, если известно, что массовая доля водорода в углеводороде составляет 9.43%, а при моногалогенировании и дальнейшем нагревании до 380°С с 25%-ным раствором щёлочи при давлении 360 атм было выделено 3 изомера в молярном соотношении 0.15: 1: 0.85. Напишите уравнения протекающих реакций.

(16 баллов)

Решение. Определим простейшую формулу неизвестного углеводорода C_xH_v:

$$x: y = \frac{90.57}{12} : \frac{9.43}{1} = 1 : 1.25$$
 или 8:10.

Следовательно, неизвестный углеводород — этилбензол C_8H_{10} . При каталитическом бромировании этилбензола образуется смесь *орто*- и *пара*-замещённых продуктов:

$$CH_2CH_3$$
 $+Br_2$
 Fe
 $+BBr$
 $+BBr$
 $+BBr$
 $+BBr$
 $+BBr$
 $+BBr$
 $+BBr$
 $+BBr$
 $+BBR$

При обработке полученной смеси гидроксидом натрия образуются три изомерных фенолята:

То, что в каждой реакции получаются два продукта, объясняется протеканием процесса через стадию отщепления бромоводорода (образования дегидробензола) и последующее присоединение нуклеофила, что приводит к образованию смеси двух региоизомеров в соотношении 1 : 1.

Очевидно, что при бромировании этилбензола продукт реакции *орто*-замещения образуется в меньшем количестве, следовательно, в конечной реакционной смеси меньше всего соли 2-этилфенола, а больше всего – соли 3-этилфенола. Следовательно, соотношение

2-бромэтилбензола и 4-бромэтилбензола равно 0.15:0.85, и выход реакции *орто*-замещения равен 15%, а реакции *пара*-замещения -85%.

Ответ: орто-бромирование – 15%, пара-бромирование – 85%.

10.3. В 1924 г. компания Dow Chemical разработала процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола, который в отсутствие катализатора протекает при 360-400°С и давлении свыше 300 атм. Рассчитайте выход продуктов монобромирования неизвестного монозамещённого углеводорода в присутствии железа по каждому направлению, если известно, что массовая доля углерода в углеводороде составляет 90.00%, а при моногалогенировании и дальнейшем нагревании до 380°С с 20%-ным раствором щёлочи при давлении 360 атм было выделено 3 изомера в молярном соотношении 1 : 10 : 9. Напишите уравнения протекающих реакций. (16 баллов)

Решение. Определим простейшую формулу неизвестного углеводорода C_xH_y:

$$x: y = \frac{90.00}{12} : \frac{9.10}{1} = 1 : 1.333$$
 или $9: 12$.

Следовательно, неизвестный углеводород — пропилбензол или изопропилбензол (кумол) C_9H_{12} . Бромирование, например, изопропилбензола дает смесь *орто-* и *пара*-замещённых продуктов:

$$\begin{array}{c|cccc} CH(CH_3)_2 & CH(CH_3)_2 \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

При обработке полученной смеси гидроксидом натрия образуются три изомерных фенолята:

То, что в каждой реакции получаются два продукта, объясняется протеканием процесса через стадию отщепления бромоводорода (образования дегидробензола) и последующее

присоединение нуклеофила, что приводит к образованию смеси двух региоизомеров в соотношении 1:1.

Очевидно, что при бромировании изопропилбензола продукт *орто*-замещения образуется в меньшем количестве, следовательно, в конечной реакционной смеси меньше всего соли 2-изопропилфенола, а больше всего – соли 3-изопропилфенола. Следовательно, соотношение 2-бромкумола и 4-бромкумола равно 1 : 9, и выход реакции *орто*-замещения равен 10%, а реакции *пара*-замещения — 90%.

Ответ: орто-бромирование – 10%, пара-бромирование – 90%.

10.4. В 1924 г. компания Dow Chemical разработала процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола, который в отсутствие катализатора протекает при 360-400°С и давлении свыше 300 атм. Рассчитайте выход продуктов монохлорирования неизвестного монозамещённого углеводорода в присутствии железа по каждому направлению, если известно, что массовая доля водорода в нём составляет 8.69%, а при моногалогенировании и дальнейшем нагревании до 380°С с 30%-ным раствором щёлочи при давлении 380 атм было выделено 3 изомера в молярном соотношении 3:10:7. Напишите уравнения протекающих реакций. (16 баллов)

Решение. Определим простейшую формулю неизвестного углеводорода C_xH_v:

$$x: y = \frac{91.31}{12} : \frac{8.69}{1} = 1 : 1.143$$
 или $7: 8$.

Следовательно, неизвестный углеводород — толуол C_7H_8 . Каталитическое хлорирование толуола дает смесь *орто*- и *пара*- замещённых продуктов:

Обработка полученной смеси гидроксидом натрия приводит к получению трех изомерных фенолятов:

CH₃
Cl
$$\frac{300 \text{ °C}}{300 \text{ atm}}$$
CH₃
CH₃
 $+ 2\text{NaCl} + 2\text{H}_2\text{O}$
ONa

CH₃

$$\frac{\text{CH}_3}{300 \text{ atm}}$$
ONa
$$\frac{\text{CH}_3}{300 \text{ atm}}$$
ONa

То, что в каждой реакции образуются два продукта, объясняется протеканием процесса через стадию отщепления бромоводорода (образования дегидробензола) и последующее присоединение нуклеофила, что приводит к образованию смеси двух региоизомеров в соотношении 1:1.

Очевидно, что при хлорировании толуола продукт реакции *орто*-замещения образуется в меньшем количестве, следовательно, в конечной реакционной смеси меньше всего соли 2-метилфенола, а больше всего — соли 3-метилфенола. Следовательно, соотношение 2-хлортолуола и 4-хлортолуола равно 3:7 и выход реакции *орто*-замещения равен 30%, а реакции *пара*-замещения — 70%.

Ответ: орто-хлорирование – 30%, пара-хлорирование – 70%.

ОТБОРОЧНЫЙ ТУР НОЯБРЬ, 5-9 классы

ЗАДАНИЕ 1

1.1. Кальций и бор образуют соединение необычного состава, в котором массовая доля одного из элементов составляет 38.17%. Установите формулу соединения. **(10 баллов)**

Решение. Пусть формула соединения — Ca_xB_y . Если 38.17% — массовая доля бора, то уравнение для x и y имеет вид (относительную атомную массу бора принимаем равной 10.8, так как массовая доля дана с высокой точностью):

$$0.3817 = \frac{10.8y}{40x + 10.8y}.$$

Это уравнение имеет следующее решение в целых числах: x = 7, y = 16 (Ca₇B₁₆). Однако такое решение не единственное. Если принять, что 38.17% – массовая доля кальция:

$$0.3817 = \frac{40x}{40x + 10.8y},$$

получаем x = 1, y = 6. Следовательно, формула соединения — CaB₆.

Ответ: CaB₆, Ca₇B₁₆.

1.2. Углерод и литий образуют соединение необычного состава, в котором массовая доля одного из элементов составляет 43.75%. Установите формулу соединения. **(10 баллов)**

Решение. Пусть формула соединения $\text{Li}_x \text{C}_y$. Если 43.75% — массовая доля углерода, то уравнение для x и y имеет вид:

$$0.4375 = \frac{12y}{7x + 12y}.$$

Это уравнение не имеет решений в небольших целых числах. Если же 43.75% – массовая доля лития, то

$$0.4375 = \frac{7x}{7x + 12y},$$

откуда x = 4, y = 3. Формула соединения – Li₄C₃.

Ответ: Li₄C₃.

1.3. Углерод и бор образуют соединение необычного состава, в котором массовая доля одного из элементов составляет 21.74%. Установите формулу соединения. **(10 баллов)**

Решение. Пусть формула соединения B_xC_y . Если 21.74% — массовая доля бора, то уравнение для x и y имеет вид (относительную атомную массу бора принимаем равной 10.8, так как массовая доля дана с высокой точностью):

$$0.2174 = \frac{10.8x}{10.8x + 12y}$$
.

Это уравнение не имеет решений в небольших целых числах. Тогда принимаем, что 21.74% – массовая доля углерода:

$$0.2174 = \frac{12y}{10.8x + 12y},$$

откуда x = 4, y = 1. Формула соединения — B_4C .

Ответ: B₄C.

1.4. Сера и азот образуют соединение необычного состава, в котором массовая доля одного из элементов составляет 30.43%. Установите формулу соединения, если известно, что его молекула содержит 8 атомов. (**10 баллов**)

Решение. Пусть формула соединения — S_xN_y . Если 30.43% — массовая доля серы, то уравнение для x и y имеет вид:

$$0.3043 = \frac{32x}{32x + 14y} \,.$$

Это уравнение не имеет решений в небольших целых числах. Тогда принимаем, что 30.43% – массовая доля азота:

$$0.3043 = \frac{14y}{32x + 14y},$$

откуда x = y. Молекула содержит 8 атомов, следовательно, x = y = 4, молекулярная формула — S_4N_4 .

Ответ: S₄N₄.

ЗАДАНИЕ 2

2.1. При разложении неорганического вещества образуются твердое вещество и смесь газов, имеющая плотность по водороду 21.6. Напишите возможное уравнение реакции. Ответ подтвердите расчетом. **(10 баллов)**

Решение. Возможное уравнение разложения:

$$2\text{Cu}(\text{NO}_3)_2 \xrightarrow{\mathfrak{t}^\circ} 2\text{CuO} + 4\text{NO}_2 \uparrow + \text{O}_2 \uparrow.$$
 Проверка: $M_{\text{см}}(\text{NO}_2,\text{O}_2) = \frac{4\cdot 46 + 32}{4+1} = 43.2 \ \text{г/моль}, \, D_{\text{H2}} = 43.2 \ / \ 2 = 21.6.$

Подходит также разложение любого нитрата металла до оксида, в котором металл не меняет степень окисления, например $Zn(NO_3)_2$, $Al(NO_3)_3$.

Ответ: например, $Cu(NO_3)_2$.

2.2. При разложении неорганического вещества образуются вода и смесь газов, имеющая плотность по водороду 13. Напишите уравнение реакции. Ответ подтвердите расчетом. **(10 баллов)**

Решение.
$$(NH_4)_2CO_3 \xrightarrow{t^\circ} 2NH_3 \uparrow + CO_2 \uparrow + H_2O.$$
 Проверка: $M_{\text{cm}}(NH_3,CO_2) = \frac{2 \cdot 17 + 44}{2 + 1} = 26 \text{ г/моль}, D_{\text{H2}} = 26 \text{ / } 2 = 13.$

Ответ: (NH₄)₂CO₃.

2.3. При разложении неорганического вещества образуется только смесь газов, имеющая плотность по водороду 12.75. Напишите уравнение реакции. Ответ подтвердите расчетом. **(10 баллов)**

Решение.
$$NH_4HS \xrightarrow{t^{\circ}} NH_3 \uparrow + H_2S \uparrow$$
. Проверка: $M_{\text{см}}(NH_3, H_2S) = \frac{17 + 34}{2} = 25.5 \text{ г/моль}, D_{\text{H2}} = 25.5 / 2 = 12.75$. Ответ: NH_4HS .

2.4. При разложении неорганического вещества образуются твердый остаток и смесь газов, имеющая плотность по водороду 20.67. Напишите уравнение реакции. Ответ подтвердите расчетом. **(10 баллов)**

Решение. Возможное уравнение реакции разложения:

$$2 {
m AgNO_3} \xrightarrow{t^\circ} 2 {
m Ag} + 2 {
m NO_2} \uparrow + {
m O_2} \uparrow.$$
 Проверка: $M_{\scriptscriptstyle {
m CM}}({
m NO_2,O_2}) = rac{2 \cdot 46 + 32}{2 + 1} = 41.33 \ {
m \Gamma/MOЛЬ}, D_{
m H2} = 41.33 \ / 2 = 20.67.$

По составу смеси подходит также нитрат другого металла, разлагающийся до чистого металла — $Hg(NO_3)_2$. Однако остающаяся в результате реакции ртуть — не твердое вещество. *Ответ*: $AgNO_3$.

ЗАДАНИЕ 3

3.1. В молекуле XY_3 длина связи X-Y составляет 0.142 нм, а расстояние между атомами Y равно 0.207 нм. Найдите угол между связями $\angle YXY$. Какую геометрическую форму имеет молекула? (13 баллов)

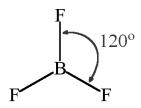
Решение. Рассмотрим равнобедренный треугольник YXY. Обозначим угол между связями \angle YXY = α и применим теорему косинусов:

$$r(Y-Y)^{2} = r(X-Y)^{2} + r(X-Y)^{2} - 2 \cdot r(X-Y)^{2} \cdot \cos\alpha,$$

$$0.207^{2} = 0.142^{2} + 0.142^{2} - 2 \cdot 0.142^{2} \cdot \cos\alpha,$$

откуда $\cos \alpha = -0.0625$, $\alpha = 93.6^{\circ}$. При таком угле атом **X** и все атомы **Y** не могут лежать в одной плоскости (для этого угол должен был бы равняться 120°), молекула имеет форму треугольной пирамиды:

Ответ: 93.6°, треугольная пирамида.


3.2. В молекуле XY_3 длина связи X-Y составляет 0.131 нм, а расстояние между атомами Y равно 0.227 нм. Найдите угол между связями $\angle YXY$. Какую геометрическую форму имеет молекула? (13 баллов)

Решение. Рассмотрим равнобедренный треугольник YXY. Обозначим угол между связями \angle YXY = α и применим теорему косинусов:

$$r(Y-Y)^{2} = r(X-Y)^{2} + r(X-Y)^{2} - 2 \cdot r(X-Y)^{2} \cdot \cos\alpha,$$

$$0.227^{2} = 0.131^{2} + 0.131^{2} - 2 \cdot 0.131^{2} \cdot \cos\alpha,$$

откуда $\cos \alpha = -0.5$, $\alpha = 120^\circ$. Атом **X** находится в центре равностороннего треугольника, образованного атомами **Y**, молекула имеет плоскую форму:

Ответ: 120°, плоская молекула.

3.3. В молекуле **XY**₃ длина связи **X**–**Y** составляет 0.152 нм, а расстояние между атомами **Y** равно 0.218 нм. Найдите угол между связями $\angle YXY$. Какую геометрическую форму имеет молекула? (13 баллов)

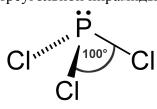
Решение. Рассмотрим равнобедренный треугольник ҮХҮ. Обозначим угол между связями $\angle YXY = \alpha$ и применим теорему косинусов:

$$r(Y-Y)^{2} = r(X-Y)^{2} + r(X-Y)^{2} - 2 \cdot r(X-Y)^{2} \cdot \cos\alpha,$$

$$0.218^{2} = 0.152^{2} + 0.152^{2} - 2 \cdot 0.152^{2} \cdot \cos\alpha,$$

откуда $\cos \alpha = -0.0285$, $\alpha = 92^{\circ}$. При таком угле все атомы **Y** и **X** не могут лежать в одной плоскости, молекула имеет форму треугольной пирамиды:

Ответ: 92°, треугольная пирамида.


3.4. В молекуле **XY**₃ длина связи **X**–**Y** составляет 0.204 нм, а расстояние между атомами **Y** равно 0.313 нм. Найдите угол между связями **ZYXY**. Какую геометрическую форму имеет молекула? (13 баллов)

Решение. Рассмотрим равнобедренный треугольник ҮХҮ. Обозначим угол между связями ∠ΥХΥ = α и применим теорему косинусов:

$$r(Y-Y)^{2} = r(X-Y)^{2} + r(X-Y)^{2} - 2 \cdot r(X-Y)^{2} \cdot \cos\alpha,$$

$$0.313^{2} = 0.204^{2} + 0.204^{2} - 2 \cdot 0.204^{2} \cdot \cos\alpha,$$

откуда $\cos \alpha = -0.177$, $\alpha = 100^{\circ}$. При таком угле все атомы **Y** и **X** не могут лежать в одной плоскости, молекула имеет форму треугольной пирамиды:

Ответ: 100°, треугольная пирамида.

ЗАДАНИЕ 4

- 4.1. Напишите уравнения реакций согласно следующим схемам превращений:
 - $K_2Cr_2O_7 + HCl \rightarrow X + ...$ a) $X + Fe \rightarrow$

 $K_2SO_3 + KMnO_4 + H_2SO_4 \rightarrow Y + ...$ б) $Y + NaOH \rightarrow$

Определите неизвестные вещества. (12 баллов)

Решение: a)
$$\mathbf{X} - \mathrm{Cl}_2$$
.

$$K_2Cr_2O_7 + 14HCl \rightarrow 3Cl_2\uparrow + 2KCl + 2CrCl_3 + 7H_2O;$$

 $2Fe + 3Cl_2 \rightarrow 2FeCl_3.$

б) **Y** – MnSO₄.

$$5K_2SO_3 + 2KMnO_4 + 3H_2SO_4 \rightarrow 6K_2SO_4 + 2MnSO_4 + 3H_2O;$$

 $MnSO_4 + 2NaOH \rightarrow Mn(OH)_2 \downarrow + Na_2SO_4.$

4.2. Напишите уравнения реакций согласно схемам превращений:

a) Al + NaOH +
$$H_2O \rightarrow X + ...$$

$$X + CuO \rightarrow$$

6)
$$K_2SO_3 + KMnO_4 + H_2O \rightarrow Y + ...$$

 $Y + HBr \rightarrow Br_2 + ...$

Определите неизвестные вещества. (12 баллов)

Решение. a)
$$\mathbf{X} - \mathbf{H}_2$$
.

$$2A1 + 2NaOH + 6H2O \rightarrow 3H2\uparrow + 2Na[Al(OH)4];$$

$$H_2 + CuO \xrightarrow{t^o} Cu + H_2O.$$

б) $\mathbf{Y} - \mathbf{MnO}_2$.

$$3K_2SO_3 + 2KMnO_4 + H_2O \rightarrow 3K_2SO_4 + 2MnO_2 \downarrow + 2KOH;$$

 $MnO_2 + 4HBr \rightarrow MnBr_2 + Br_2 + 2H_2O.$

4.3. Напишите уравнения реакций согласно схемам превращений:

a)
$$Mg + HNO_3(pa36) \rightarrow X + ...$$

$$\mathbf{X} \xrightarrow{t}$$

$$SO_2 + KMnO_4 + H_2O \rightarrow Y + ...$$

 $Y + Zn \rightarrow$

Определите неизвестные вещества. (12 баллов)

Решение. a)
$$X - Mg(NO_3)_2$$
 или NH_4NO_3 .

$$4Mg + 10HNO_3 \rightarrow 4Mg(NO_3)_2 + NH_4NO_3 + 3H_2O;$$

$$2Mg(NO_3)_2 \xrightarrow{t^\circ} 2MgO + 4NO_2 + O_2$$

или

$$NH_4NO_3 \xrightarrow{t^o} N_2O + 2H_2O.$$

б) $\mathbf{Y} - \mathbf{H}_2 \mathbf{SO}_4$.

$$5SO_2 + 2KMnO_4 + 2H_2O \rightarrow 2K_2SO_4 + MnSO_4 + 2H_2SO_4$$

 $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2\uparrow$.

4.4. Напишите уравнения реакций согласно схемам превращений:

a)
$$\operatorname{Cl}_2 + \operatorname{KOH} \xrightarrow{t} \mathbf{X} + \dots$$

$$\mathbf{X} \xrightarrow{t}$$

б)
$$Fe + H_2SO_4(конц) \xrightarrow{t} Y + ...$$

 $Y + Fe \rightarrow$

Определите неизвестные вещества. (12 баллов)

Решение. a)
$$X - KClO_3$$
.

$$3Cl_2 + 6KOH \rightarrow KClO_3 + 5KCl + 3H_2O;$$

$$2KClO_3 \xrightarrow{t^\circ} 2KCl + 3O_2$$

или

$$4KClO_3 \xrightarrow{t^\circ} KCl + 3KClO_4$$
.

6) $Y - Fe_2(SO_4)_3$.

2Fe + 6H₂SO₄(конц)
$$\stackrel{t}{\longrightarrow}$$
 Fe₂(SO₄)₃ + 3SO₂↑ + 6H₂O;
Fe₂(SO₄)₃ + Fe \rightarrow 3FeSO₄.

ЗАДАНИЕ 5

5.1. Напишите уравнения реакций, в которых степень окисления азота меняется следующим образом:

$$N^0 \to N^{-3} \to N^{-3} \to N^{+2} \to N^{+4} \to N^{+5}$$
. (15 баллов)

Решение. 1)
$$N_2 + 3Mg \rightarrow Mg_3N_2$$
 $(N^0 \rightarrow N^{-3})$
2) $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$ $(N^{-3} \rightarrow N^{-3})$
3) $4NH_3 + 5O_2 \xrightarrow{\kappa ar} 4NO + 6H_2O$ $(N^{-3} \rightarrow N^{+2})$
4) $2NO + O_2 \rightarrow 2NO_2$ $(N^{+2} \rightarrow N^{+4})$
5) $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$ $(N^{+4} \rightarrow N^{+5})$

5.2. Напишите уравнения реакций, в которых степень окисления кислорода меняется следующим образом:

$$O^{10} \to O^{0} \to O^{-1} \to O^{-1} \to O^{-2} \to O^{+2}$$
. (15 баллов)

Решение. 1)
$$2O_3 \rightarrow 3O_2$$
 $(O^0 \rightarrow O^0)$
2) $Ba + O_2 \rightarrow BaO_2$ $(O^0 \rightarrow O^{-1})$
3) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + H_2O_2$ $(O^{-1} \rightarrow O^{-1})$
4) $2H_2O_2 \rightarrow 2H_2O + O_2$ $(O^{-1} \rightarrow O^{-2})$
5) $2H_2O + 4F_2 \rightarrow 4HF + 2OF_2$ $(O^{-2} \rightarrow O^{+2})$

5.3. Напишите уравнения реакций, в которых степень окисления хлора меняется следующим образом:

$$Cl^{-1} \to Cl^0 \to Cl^{+5} \to Cl^{-1} \to Cl^{+1} \to Cl^{-1}$$
. (15 баллов)

2)
$$3Cl_2 + 6KOH \xrightarrow{t^{\circ}} KClO_3 + 5KCl + 3H_2O \quad (Cl^0 \rightarrow Cl^{+5})$$

3)
$$2KClO_3 \xrightarrow{t^o} 2KCl + 3O_2$$
 $(Cl^{+5} \rightarrow Cl^{-1})$

4) KCl + $H_2O \rightarrow KClO + H_2$ (электролиз раствора с перемешиванием) ($Cl^{-1} \rightarrow Cl^{+1}$)

5) KClO + H₂S
$$\rightarrow$$
 KCl + S \downarrow + H₂O (Cl⁺¹ \rightarrow Cl⁻¹)

5.4. Напишите уравнения реакций, в которых степень окисления углерода меняется следующим образом:

$$C^{0} \to C^{-4} \to C^{-4} \to C^{-4} \to C^{+4} \to C^{0} \to C^{-1}$$
. (15 баллов)

Решение. 1)
$$4A1 + 3C \xrightarrow{t^{\circ}} Al_4C_3$$
 ($C^0 \to C^{-4}$)
2) $Al_4C_3 + 12H_2O = 4Al(OH)_3 + 3CH_4$ ($C^{-4} \to C^{-4}$)
3) $CH_4 + 2O_2 = CO_2 + 2H_2O$ ($C^{-4} \to C^{+4}$)
4) $CO_2 + 2Mg \xrightarrow{t^{\circ}} 2MgO + C$ ($C^{+4} \to C^{0}$)
5) $Ca + 2C \xrightarrow{t^{\circ}} CaC_2$ ($C^0 \to C^{-1}$)

ЗАДАНИЕ 6

6.1. Хлорсодержащие окислители, используемые для очистки воды или отбеливания, характеризуют содержанием «активного хлора» – это отношение массы хлора, полученного взаимодействием окислителя с избытком соляной кислоты, к массе окислителя (в %). Сколько процентов «активного хлора» содержит 15%-й раствор гипохлорита натрия? Может ли содержание «активного хлора» превышать 100%? Если да – приведите пример, если нет – объясните, почему. (20 баллов)

Решение. Возьмем 100 г раствора гипохлорита натрия, тогда m(NaClO) = 15 г.

NaClO + 2HCl
$$\rightarrow$$
 Cl₂ \uparrow + NaCl + H₂O.
 ν (NaClO) = 15 / 74.5 = 0.2 моль,
 ν (Cl₂) = ν (NaClO) = 0.2 моль,
 m (Cl₂) = 0.2 · 71 = 14.2 г.

Процент «активного хлора» в растворе NaClO: $14.2 \, \Gamma / 100 \, \Gamma \cdot 100\% = 14.2\%$.

Содержание активного хлора может быть больше 100%. Пример – чистый КСІО3:

$$KClO_3 + 6HCl \rightarrow 3Cl_2 \uparrow + KCl + 3H_2O$$
.

Здесь процент «активного хлора»: $3.71 \ \Gamma / 122.5 \ \Gamma \cdot 100\% = 174\%$. *Ответ*: 14.2%, да, может.

6.2. Хлорсодержащие окислители, используемые для очистки воды или отбеливания, характеризуют содержанием «активного хлора» – это отношение массы хлора, полученного взаимодействием окислителя с избытком соляной кислоты, к массе окислителя (в %). Сколько процентов «активного хлора» содержит пентагидрат гипохлорита натрия? Может ли содержание «активного хлора» превышать 100%? Если да – приведите пример, если нет – объясните, почему. (20 баллов)

Решение. Возьмем 1 моль пентагидрата гипохлорита натрия, $m(NaClO \cdot 5H_2O) = 164.5 \text{ г.}$

NaClO + 2HCl
$$\rightarrow$$
 Cl₂ \uparrow + NaCl + H₂O.
 ν (Cl₂) = ν (NaClO) = 1 моль,
 m (Cl₂) = 71 г.

Процент «активного хлора» в кристаллогидрате: 71 г / 164.5 г \cdot 100% = 43.2%.

Содержание активного хлора **может быть больше 100%**. Пример – чистый NaClO₂:

$$NaClO_2 + 4HCl \rightarrow 2Cl_2 \uparrow + NaCl + 2H_2O$$
.

Процент «активного хлора»: $2.71 \, \Gamma / 90.5 \, \Gamma \cdot 100\% = 157\%$.

Ответ: 43.2%, да, может.

- **6.3.** Благодаря развитию промышленности растут выбросы в атмосферу углекислого газа. Основной природный способ его утилизации фотосинтез. Однако, возможны и промышленные способы. Напишите по одному уравнению реакции, позволяющему преобразовать CO₂ в практически важное вещество с массовым содержанием углерода:
 - a) 12%;
 - б) 20%;
 - в) 37.5%;
 - г) 75%.

(20 баллов)

Решение.

а) 12% С – карбонат кальция
$$CaCO_3$$
 $CaO + CO_2 \rightarrow CaCO_3$;

б) 20% С – мочевина,
$$(NH_2)_2CO$$
 $2NH_3 + CO_2 \rightarrow (NH_2)_2CO + H_2O$;

в) 37.5% С – метанол, CH₃OH
$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$
; $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$.

6.4. Хлорсодержащие окислители, используемые для очистки воды или отбеливания, характеризуют содержанием «активного хлора» — это отношение массы хлора, полученного взаимодействием окислителя с избытком соляной кислоты, к массе окислителя (в %). Сколько процентов «активного хлора» содержит: а) оксид хлора(I), б) оксид хлора(IV)?

(20 баллов)

Решение. Возьмем по 1 молю Cl_2O и ClO_2 , $m(Cl_2O) = 87$ г, $m(ClO_2) = 67.5$ г.

a) $Cl_2O + 2HCl \rightarrow 2Cl_2\uparrow + H_2O$.

$$v(Cl_2) = 2v(Cl_2O) = 2$$
 моль, $m(Cl_2) = 142$ г.

Процент «активного хлора» в Cl_2O : 142 г / 87 г · 100% = 163%.

6) $2ClO_2 + 8HCl \rightarrow 5Cl_2 \uparrow + 4H_2O$.

$$v(Cl_2) = 2.5v(ClO_2) = 2.5$$
 моль, $m(Cl_2) = 177.5$ г.

Процент «активного хлора» в ClO_2 : 177.5 г / 67.5 г · 100% = 263%.

Хлорный ангидрид имеет максимально возможное содержание «активного хлора». *Ответ*: а) 163%, б) 263%.

ЗАДАНИЕ 7

7.1. Неорганическое вещество представляет собой белый порошок, хорошо растворимый в воде. Оно окрашивает пламя в желтый цвет, реагирует с кислотами и щелочами (в первом случае газ выделяется, во втором – нет). В водном растворе вещество окисляется кислородом воздуха, при этом видимых изменений не происходит. Установите формулу вещества, предложите один способ его получения и напишите уравнения всех описанных реакций.

(20 баллов)

Решение. Неорганическое вещество – NaHSO₃, гидросульфит натрия. Его получение:

$$SO_2 + NaOH \rightarrow NaHSO_3$$
.

Реакции: NaHSO₃ + HCl → NaCl + SO₂↑ + H₂O;

 $NaHSO_3 + NaOH \rightarrow Na_2SO_3 + H_2O;$ $2NaHSO_3 + O_2 \rightarrow Na_2SO_4 + H_2SO_4.$

Благодаря последней реакции гидросульфит натрия используют в качестве антиоксиданта.

Ответ: NaHSO₃.

7.2. Неорганическое вещество представляет собой белый порошок, хорошо растворимый в воде. Оно окрашивает пламя в желтый цвет, реагирует с щелочами, но не реагирует с кислотами. При нагревании вещество разлагается в две стадии: сначала выделяются пары воды, а при сильном прокаливании происходит значительная потеря массы. Установите формулу вещества, предложите один способ его получения и напишите уравнения всех описанных реакций. (20 баллов)

Решение. Неорганическое вещество – NaHSO₄, гидросульфат натрия. Его получение:

$$NaOH + H_2SO_4 \rightarrow NaHSO_4 + H_2O.$$

Реакции: $NaHSO_4 + NaOH \rightarrow Na_2SO_4 + H_2O$,

$$2\text{NaHSO}_4 \xrightarrow{t^0} \text{Na}_2\text{S}_2\text{O}_7 + \text{H}_2\text{O}^{\uparrow},$$

 $Na_2S_2O_7 \xrightarrow{t^o} Na_2SO_4 + SO_3\uparrow$.

Ответ: NaHSO₄.

7.3. Неорганическое вещество представляет собой белый порошок, хорошо растворимый в воде. Оно окрашивает пламя в фиолетовый цвет, реагирует с щелочами, но не реагирует с

кислотами. При нагревании вещество разлагается в две стадии: сначала выделяются пары воды, а при сильном прокаливании происходит значительная потеря массы. Установите формулу вещества, предложите один способ его получения и напишите уравнения всех описанных реакций. (20 баллов)

Решение. Неорганическое вещество – KHSO₄, гидросульфат калия. Его получение:

 $KOH + H_2SO_4 \rightarrow KHSO_4 + H_2O$.

Реакции: $KHSO_4 + KOH \rightarrow K_2SO_4 + H_2O$,

 $2KHSO_{4} \xrightarrow{t^{\circ}} K_{2}S_{2}O_{7} + H_{2}O^{\uparrow},$

 $K_2S_2O_7 \xrightarrow{t^{\circ}} K_2SO_4 + SO_3 \uparrow$.

Ответ: KHSO₄.

7.4. Неорганическое вещество представляет собой белый порошок, хорошо растворимый в воде. Оно окрашивает пламя в желтый цвет, реагирует с кислотами и щелочами (в первом случае газ выделяется, во втором — нет), легко окисляется кислородом воздуха с образованием простого вещества. Установите формулу вещества, предложите один способ его получения и напишите уравнения всех описанных реакций. (20 баллов)

Решение. Неорганическое вещество – NaHS, гидросульфид натрия. Его получение:

 $H_2S + NaOH \rightarrow NaHS + H_2O$.

Реакции: NaHS + HCl → NaCl + H_2S^{\uparrow} ;

 $NaHS + NaOH \rightarrow Na_2S + H_2O;$

 $2NaHS + O_2 \rightarrow 2NaOH + 2S$.

Ответ: NaHS.

ОТБОРОЧНЫЙ ТУР ДЕКАБРЬ, 5-9 классы

ЗАДАНИЕ 1

1.1. Цезий и кислород образуют соединение необычного состава, в котором массовая доля одного из элементов составляет 96.14%. Установите формулу соединения. (10 баллов)

Решение. Пусть формула соединения Cs_xO_y . Цезий — намного более тяжелый элемент, чем кислород, поэтому логично предположить, что 96.14% — массовая доля цезия, тогда

$$\omega(\mathrm{Cs}) = 0.9614 = \frac{133x}{133x + 16y},$$

откуда x = 3y. Формула соединения — Cs₃O.

Ответ: Cs₃O.

1.2. Цезий и кислород образуют соединение необычного состава, в котором массовая доля одного из элементов составляет 97.08%. Установите формулу соединения. (10 баллов)

Решение. Пусть формула соединения Cs_xO_y . Цезий — намного более тяжелый элемент, чем кислород, поэтому логично предположить, что 97.08% — массовая доля цезия, тогда

$$\omega(Cs) = 0.9708 = \frac{133x}{133x + 16y},$$

откуда x = 4y. Формула соединения — Cs₄O.

Ответ: Cs4O.

1.3. Серебро и углерод образуют соединение необычного состава, в котором массовые доли элементов отличаются в 4 раза. Установите формулу соединения. (10 баллов)

Pешение. Пусть формула соединения Ag_xC_y . Массовые доли элементов — 80% и 20%. Серебро — намного более тяжелый элемент, чем углерод, поэтому логично предположить, что 80% — массовая доля серебра:

$$\omega(Ag) = 0.8 = \frac{108x}{108x + 12y},$$

откуда 9x = 4y. Простейшее решение в целых числах: x = 4, y = 9. Формула соединения – Ag_4C_9 .

Ответ: Ag₄C₉.

1.4. Марганец и углерод образуют соединение необычного состава, в котором массовая доля одного из элементов составляет 93.22%. Установите формулу соединения. **(10 баллов)**

Решение. Пусть формула соединения Mn_xC_y . Марганец – более тяжелый элемент, чем углерод, поэтому логично предположить, что 93.22% – массовая доля марганца:

$$\omega(Mn) = 0.9322 = \frac{55x}{55x + 12y},$$

откуда x = 3y. Формула соединения – Mn₃C.

Ответ: Mn₃C.

ЗАДАНИЕ 2

2.1. Сколько граммов гидрида натрия надо растворить в 100 г воды для получения 10%-ного раствора щелочи? (10 баллов)

Решение. Уравнение реакции:

$$NaH + H_2O \rightarrow NaOH + H_2\uparrow$$
.

Пусть в воде растворили x моль NaH, тогда в растворе образовалось x моль NaOH и выделилось x моль H_2 . Выразим массу щелочи и массу раствора:

$$m(\text{NaOH}) = 40 \ x \ (\Gamma),$$

 $m(\text{p-pa}) = 100 + m(\text{NaH}) - m(\text{H}_2) = 100 + 22x.$

Массовая доля щелочи:

$$\omega(\text{NaOH}) = 0.1 = 40x / (100 + 22x),$$

отсюда x = 0.265 моль. Масса гидрида равна

$$m(\text{NaH}) = 0.265 \cdot 24 = 6.36 \text{ }\Gamma.$$

Ответ: 6.36 г.

2.2. Сколько граммов гидрида лития надо растворить в 200 г воды для получения 15%-ного раствора щелочи? (10 баллов)

Решение. Уравнение реакции:

$$LiH + H_2O \rightarrow LiOH + H_2\uparrow$$
.

Пусть в воде растворили x моль LiH, тогда в растворе образовалось x моль LiOH и выделилось x моль H_2 . Выразим массу щелочи и массу раствора:

$$m(\text{LiOH}) = 24 x (\Gamma),$$

 $m(\text{p-pa}) = 200 + m(\text{LiH}) - m(\text{H}_2) = 200 + 6x.$

Массовая доля щелочи:

$$\omega(\text{LiOH}) = 0.15 = 24x / (200 + 6x),$$

отсюда x = 1.3 моль. Масса гидрида равна

$$m(\text{LiH}) = 1.3 \cdot 8 = 10.4 \text{ }\Gamma.$$

Ответ: 10.4 г.

2.3. Сколько граммов гидрида натрия надо растворить в 100 г 10%-ной соляной кислоты, чтобы получить раствор, в котором массовые доли соли и кислоты равны? **(10 баллов)**

Решение. Уравнение реакции:

NaH + HCl
$$\rightarrow$$
 NaCl + H₂ \uparrow .

Пусть в кислоте растворили x моль NaH, тогда израсходовано x моль HCl, образовалось x моль NaCl, а в полученном растворе массы оставшегося HCl и образовавшегося NaCl равны:

$$100 \cdot 0.1 - 36.5x = 58.5x$$

отсюда x = 0.105 моль. Масса гидрида равна

$$m(\text{NaH}) = 0.105 \cdot 24 = 2.5 \text{ }\Gamma.$$

Ответ: 2.5 г.

2.4. Сколько граммов хлорида алюминия надо добавить к 250 г 10%-ного раствора аммиака, чтобы получить раствор, в котором массовые доли соли и аммиака равны? **(10 баллов)**

Решение. Уравнение реакции:

$$AlCl_3 + 3NH_3 + 3H_2O \rightarrow Al(OH)_3 \downarrow + 3NH_4Cl.$$

Пусть к раствору добавили растворили x моль $AlCl_3$, тогда израсходовано 3x моль NH_3 , образовалось 3x моль NH_4Cl , а в полученном растворе массы оставшегося NH_3 и образовавшегося NH_4Cl равны:

$$250 \cdot 0.1 - 17 \cdot 3x = 53.5 \cdot 3x$$

отсюда x = 0.118 моль. Масса хлорида алюминия равна

$$m(AlCl_3) = 0.118 \cdot 133.5 = 15.8 \text{ }\Gamma.$$

Ответ: 15.8 г.

ЗАДАНИЕ 3

3.1. В молекуле некоторого соединения атомы серы имеют разные валентности. Предложите формулу одного из таких соединений, изобразите его структурную формулу и определите степени окисления всех элементов. (12 баллов)

Решение. Например, $H_2S_2O_5$ – дисернистая кислота:

Степени окисления: H^{+1} , O^{-2} , S^{+3} и S^{+5} .

Также удовлетворяет условиям задачи тиосульфат натрия Na₂S₂O₃.

3.2. В молекуле некоторого соединения атомы азота имеют разные валентности. Предложите формулу одного из таких соединений, изобразите его структурную формулу и определите степени окисления всех элементов. (12 баллов)

Решение. Например, N₂O – оксид азота(I):

$$\ddot{N}=N=\ddot{0}$$

Степени окисления: O^{-2} , N^0 и N^{+2} .

Также удовлетворяет условиям задачи нитрит аммония NH₄NO₂.

3.3. В молекуле некоторого соединения атомы фосфора имеют разные валентности. Предложите формулу одного из таких соединений, изобразите его структурную формулу и определите степени окисления всех элементов. (12 баллов)

Решение. Например, P₄O₈ – октаоксид тетрафосфора:

Степени окисления: O^{-2} , P^{+3} (два атома) и P^{+5} (два атома).

3.4. В молекуле некоторого соединения атомы хлора имеют разные валентности. Предложите формулу одного из таких соединений, изобразите его структурную формулу и определите степени окисления всех элементов. (12 баллов)

Решение. Например, Cl₂O₆ – гексаоксид дихлора:

Степени окисления: O^{-2} , Cl^{+5} и Cl^{+7} .

ЗАДАНИЕ 4

- **4.1.** Какие два вещества вступили в реакцию, если в результате образовались следующие вещества (коэффициенты не указаны)? Напишите полные уравнения реакций. **(13 баллов)**
 - a) KHCO₃
 - 6) $Mg(NO_3)_2 + NH_4NO_3 + H_2O$
 - $KC1 + P_2O_5$
 - Γ) $H_3PO_3 + HI$

Решение. a) KOH + CO₂ → KHCO₃

- 6) $4Mg + 10HNO_3 \rightarrow 4Mg(NO_3)_2 + NH_4NO_3 + 3H_2O$
- B) $5KClO_3 + 6P \rightarrow 5KCl + 3P_2O_5$
- Γ) $PI_3 + 3H_2O \rightarrow H_3PO_3 + 3HI$

- **4.2.** Какие два вещества вступили в реакцию, если в результате образовались следующие вещества (коэффициенты не указаны)? Напишите полные уравнения реакций. **(13 баллов)**
 - a) NaHSO₄
 - $Mg(NO_3)_2 + NH_4NO_3$
 - B) $KBr + SO_2$
 - Γ) $H_2SO_4 + HC1$

Решение. a) NaOH + SO₃ → NaHSO₄

- 6) $Mg_3N_2 + 8HNO_3 \rightarrow 3Mg(NO_3)_2 + 2NH_4NO_3$
- B) $2KBrO_3 + 3S \rightarrow 2KBr + 3SO_2$
- Γ) SO₂Cl₂ + 2H₂O \rightarrow H₂SO₄ + 2HCl
- **4.3.** Какие два вещества вступили в реакцию, если в результате образовались следующие вещества (коэффициенты не указаны)? Напишите полные уравнения реакций. (13 баллов)
 - a) $Fe(OH)_3 + KCl + CO_2$
 - δ) $ZnSO_4 + S + H_2O$
 - $Na_2SiO_3 + CO_2$
 - Γ) $H_3PO_4 + HCl$

Решение. a) $FeCl_3 + 3KHCO_3 \rightarrow Fe(OH)_3 \downarrow + 3CO_2 \uparrow + 3KCl$ или $2FeCl_3 + 3K_2CO_3 + 3H_2O \rightarrow 2Fe(OH)_3 \downarrow + 3CO_2 \uparrow + 6KCl$,

6) $3Zn + 4H_2SO_4 \rightarrow 3ZnSO_4 + S\downarrow + 4H_2O$

- B) $Na_2CO_3 + SiO_2 \xrightarrow{t^o} Na_2SiO_3 + CO_2 \uparrow$
- Γ) PCl₅ + 4H₂O \rightarrow H₃PO₄ + 5HCl
- **4.4.** Какие два вещества вступили в реакцию, если в результате образовались следующие вещества (коэффициенты не указаны)? Напишите полные уравнения реакций. (13 баллов)
 - a) $Al(OH)_3 + KCl + CO_2$
 - 6) $KC1 + I_2 + H_2O$
 - B) $CaSiO_3 + CO_2$
 - Γ) $CO_2 + HC1$

или

Решение. a) AlCl₃ + 3KHCO₃ → Al(OH)₃ \downarrow + 3CO₂↑ + 3KCl

- δ) KClO₃ + 6HI → KCl + 3I₂ + 3H₂O
- B) $CaCO_3 + SiO_2 \xrightarrow{t^{\circ}} CaSiO_3 + CO_2 \uparrow$
- r) $COCl_2 + H_2O \rightarrow CO_2 + 2HCl$ $HCOOH + Cl_2 \rightarrow CO_2 + 2HCl.$

ЗАДАНИЕ 5

5.1. Напишите уравнения реакций, в которых степень окисления железа меняется следующим образом:

$$Fe^{0} \to Fe^{+2} \to Fe^{+3} \to Fe^{+3} \to Fe^{+3} \to Fe^{+6} \to Fe^{+6}$$
. (15 баллов)

Решение. Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂ \uparrow (Fe⁰ \rightarrow Fe⁺²)
2FeCl₂ + Cl₂ \rightarrow 2FeCl₃ (Fe⁺² \rightarrow Fe⁺³)
FeCl₃ + 3KOH \rightarrow Fe(OH)₃ \downarrow + 3KCl (Fe⁺³ \rightarrow Fe⁺³)
2FeCl₃ + 3Cl₂ + 16KOH \rightarrow 2K₂FeO₄ + 12KCl + 8H₂O (Fe⁺³ \rightarrow Fe⁺⁶)
K₂FeO₄ + BaCl₂ \rightarrow BaFeO₄ \downarrow + 2KCl (Fe⁺⁶ \rightarrow Fe⁺⁶)

5.2. Напишите уравнения реакций, в которых степень окисления марганца меняется следующим образом:

$$Mn^0 \to Mn^{+2} \to Mn^{+2} \to Mn^{+4} \to Mn^{+7} \to Mn^{+6} + Mn^{+4}$$
. (15 баллов)

Решение.
$$Mn + 2HCl \rightarrow MnCl_2 + H_2 \uparrow$$
 $(Mn^0 \rightarrow Mn^{+2})$ $MnCl_2 + 2KOH \rightarrow Mn(OH)_2 \downarrow + 2KCl$ $(Mn^{+2} \rightarrow Mn^{+2})$ $Mn(OH)_2 + Cl_2 + 2KOH \rightarrow MnO_2 \downarrow + 2KCl + 2H_2O$ $(Mn^{+2} \rightarrow Mn^{+4})$ $2MnO_2 + 3PbO_2 + 6HNO_3 \rightarrow 2HMnO_4 + 3Pb(NO_3)_2 + 2H_2O$ $(Mn^{+4} \rightarrow Mn^{+7})$ $2HMnO_4 + 2KOH \xrightarrow{t^0} K_2MnO_4 + MnO_2 \downarrow + O_2 \uparrow + 2H_2O$. $(Mn^{+7} \rightarrow Mn^{+6} + Mn^{+4})$

5.3. Напишите уравнения реакций, в которых степень окисления меди меняется следующим образом:

$$Cu^{0} \to Cu^{+2} \to Cu^{+1} \to Cu^{+2} \to Cu^{+2} \to Cu^{0}$$
. (15 баллов)

Решение.
$$Cu + Cl_2 \rightarrow CuCl_2$$
 $(Cu^0 \rightarrow Cu^{+2})$ $CuCl_2 + Cu \rightarrow 2CuCl$ $(Cu^{+2} \rightarrow Cu^{+1})$ $2CuCl + Cl_2 + 12NH_3 + 4H_2O \rightarrow 2[Cu(NH_3)_4](OH)_2 + 4NH_4Cl$ $(Cu^{+1} \rightarrow Cu^{+2})$ $[Cu(NH_3)_4](OH)_2 + 3H_2SO_4 \rightarrow CuSO_4 + 2(NH_4)_2SO_4 + 2H_2O$ $(Cu^{+2} \rightarrow Cu^{+2})$ $CuSO_4 + Fe \rightarrow FeSO_4 + Cu \downarrow$ $(Cu^{+2} \rightarrow Cu^0)$

5.4. Напишите уравнения реакций, в которых степень окисления хрома меняется следующим образом:

$$Cr^0 \to Cr^{+2} \to Cr^{+3} \to Cr^{+6} \to Cr^{+6} \to Cr^{+3}$$
. (15 баллов)

Решение.
$$Cr + 2HCl \rightarrow CrCl_2 + H_2 \uparrow$$
 $(Cr^0 \rightarrow Cr^{+2})$ $2CrCl_2 + Cl_2 \rightarrow 2CrCl_3$ $(Cr^{+2} \rightarrow Cr^{+3})$ $2CrCl_3 + 3Cl_2 + 16KOH \rightarrow 2K_2CrO_4 + 12KCl + 8H_2O$ $(Cr^{+3} \rightarrow Cr^{+6})$ $2K_2CrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O$ $(Cr^{+6} \rightarrow Cr^{+6})$ $K_2Cr_2O_7 + 14HCl \rightarrow 3Cl_2 + 2CrCl_3 + 2KCl + 7H_2O$ $(Cr^{+6} \rightarrow Cr^{+3})$

ЗАДАНИЕ 6

- **6.1.** Автомобили, двигатели которых работают на водороде, называют более «зелеными», т. е. экологически более чистыми, чем те, которые используют углеводородное топливо. Сравним эти двигатели.
- 1) Сколько кубометров водорода (н. у.) потребуется для работы в течение одного часа автомобильного двигателя мощностью 75 кВт?
- 2) Сколько кубометров углекислого газа (н. у.) выделится в атмосферу при производстве такого количества водорода из метана в реакции с парами воды?
- 3) Сколько литров сжиженного газа (примем, что это пропан, плотность 550 г/л) потребуется для часовой работы такого же двигателя, и сколько при этом образуется углекислого газа (в $\rm m^3$, н. у.)?

Известно, что кпд водородного двигателя -20%, кпд двигателя на газе -40%, теплота сгорания водорода -240 кДж/моль, теплота сгорания пропана -2200 кДж/моль. (20 баллов)

Решение. 1) Рассмотрим водородный двигатель. Работа, совершенная двигателем:

$$A = Wt = 75 \text{ кВт} \cdot 3600 \text{ c} = 2.7 \cdot 10^5 \text{ кДж}.$$

Необходимая теплота:

$$Q = A / \eta = 2.7 \cdot 10^5 / 0.2 = 1.35 \cdot 10^6$$
 кДж.

Количество вещества водорода:

$$v(H_2) = Q / Q_m = 1.35 \cdot 10^6 \text{ кДж} / 240 \text{ кДж/моль} = 5625 \text{ моль}.$$

Объем водорода:

$$V(H_2) = v \cdot V_m = 5625 \text{ моль} \cdot 0.0224 \text{ м}^3/\text{моль} = 126 \text{ м}^3.$$

2) Объем углекислого газа:

$$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2,$$

 $V(CO_2) = V(H_2) / 4 = 31.5 \text{ m}^3.$

3) Рассмотрим двигатель на сжиженном газе. Необходимая теплота:

$$Q = A / \eta = 2.7 \cdot 10^5 / 0.4 = 6.75 \cdot 10^5$$
 кДж.

Количество вещества пропана:

$$v(C_3H_8) = Q/Q_m = 6.75 \cdot 10^5 \text{ кДж} / 2200 \text{ кДж/моль} = 307 \text{ моль}.$$

Объем пропана:

$$V(C_3H_8) = \nu \cdot M / \rho = 307 \text{ моль} \cdot 44 \Gamma / \text{моль} / 550 \Gamma / \pi = 24.5 \text{ л}.$$

Объем углекислого газа:

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O.$$

 $\nu(CO_2) = 3.307 = 921$ моль.
 $V(CO_2) = \nu \cdot V_m = 921$ моль $\cdot 0.0224$ м³/моль $= 20.6$ м³.

Получается, что двигатель, работающий на сжиженном газе, более экологичен, чем водородный, в отношении выделения углекислого газа.

Ответ: 1) 126
$$M^3$$
, 2) 31.5 M^3 , 3) 24.5 Π , 20.6 M^3 .

- **6.2.** Автомобили, двигатели которых работают на водороде, называют более «зелеными», т. е. экологически более чистыми, чем те, которые используют углеводородное топливо. Сравним эти двигатели. Возьмем 50 л жидкого водорода (плотность 71 кг/м 3) и 50 л жидкого пропана (плотность 550 кг/м 3).
- 1) Сколько времени сможет работать на каждом из этих видов топлива автомобильный двигатель мощностью 50 кВт?
 - 2) Сколько кубометров углекислого газа (н. у.) выделится в атмосферу:
 - а) при производстве такого количества водорода из метана в реакции с водой;
 - б) при сгорании такого количества пропана?

Известно, что кпд водородного двигателя -20%, кпд двигателя на газе -40%, теплота сгорания водорода -240 кДж/моль, теплота сгорания пропана -2200 кДж/моль. (20 баллов)

Решение. 1) Рассмотрим водородный двигатель. Количество вещества водорода:

$$v(H_2) = m / M = 50 \text{ л} \cdot 71 \text{ г/л} / 2 \text{ г/моль} = 1775 моль.$$

Теплота сгорания:

$$Q = vQ_{\rm m} = 1775 \text{ моль} \cdot 240 \text{ кДж/моль} = 4.26 \cdot 10^5 \text{ кДж}.$$

Работа, совершенная двигателем:

$$A = \eta Q = 0.2 \cdot 4.26 \cdot 10^5 = 8.52 \cdot 10^4$$
 кДж.

Время работы двигателя:

$$t = A / W = 8.52 \cdot 10^4 \text{ кДж} / 50 \text{ кВт} = 1704 \text{ c} = 28.4 \text{ мин}.$$

Теперь рассмотрим двигатель на природном газе. Количество вещества пропана:

$$v(C_3H_8) = m / M = 50 \text{ л} \cdot 550 \text{ г/л} / 44 \text{ г/моль} = 625 \text{ моль}.$$

Теплота сгорания:

$$Q = vQ_{\rm m} = 625$$
 моль \cdot 2200 кДж/моль $= 1.375 \cdot 10^6$ кДж.

Работа, совершенная двигателем:

$$A = \eta Q = 0.4 \cdot 1.375 \cdot 10^6 = 5.5 \cdot 10^5 \text{ кДж}.$$

Время работы двигателя:

$$t = A / W = 5.5 \cdot 10^5$$
 кДж / 50 кВт = 11000 с = 3.06 ч.

2) а) Объем углекислого газа в случае производства водорода из метана:

$$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$$

 $\nu(CO_2) = \nu(H_2) / 4 = 444$ моль.
 $V(CO_2) = \nu \cdot V_m = 444$ моль · 0.0224 м³/моль = 9.94 м³.

б) Объем углекислого газа при сжигании пропана:

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

 $v(CO_2) = 3.625 = 1875$ моль.

 $V(\text{CO}_2) = \nu \cdot V_\text{m} = 1875 \text{ моль} \cdot 0.0224 \text{ м}^3/\text{моль} = 42 \text{ м}^3.$ Ответ: 1) 28.4 мин и 3.06 ч, 2) а) 9.94 м³, б) 42 м³.

- 6.3. Автомобили, двигатели которых работают на водороде, называют более «зелеными», т. е. экологически более чистыми, чем те, которые используют углеводородное топливо. Сравним эти двигатели. Возьмем по одному килограмму жидкого водорода и жидкого пропана (плотность 550 кг/м^3).
- 1) Сколько времени сможет работать на каждом из этих видов топлива автомобильный двигатель мощностью 60 кВт?
 - 2) Сколько кубометров углекислого газа (н.у.) выделится в атмосферу:
 - а) при производстве такого количества водорода из метана в реакции с водой;
 - б) при сгорании такого количества пропана?

Известно, что кпд водородного двигателя – 20%, кпд двигателя на газе – 40%, теплота сгорания водорода – 240 кДж/моль, теплота сгорания пропана – 2200 кДж/моль. (20 баллов)

Решение. 1) Рассмотрим водородный двигатель. Количество вещества водорода:

$$\nu(H_2) = m / M = 1000 г / 2 г/моль = 500 моль.$$

Теплота сгорания:

$$Q = vQ_{\rm m} = 500$$
 моль \cdot 240 кДж/моль $= 1.2 \cdot 10^5$ кДж.

Работа, совершенная двигателем:

$$A = \eta Q = 0.2 \cdot 1.2 \cdot 10^5 = 2.4 \cdot 10^4$$
 кДж.

Время работы водородного двигателя:

$$t = A / W = 2.4 \cdot 10^4 \text{ кДж} / 60 \text{ кВт} = 400 \text{ c} = 6.7 \text{ мин.}$$

Теперь рассмотрим двигатель на природном газе. Количество вещества пропана:

$$\nu(C_3H_8) = m / M = 1000 \Gamma / 44 \Gamma / MOЛЬ = 22.7 МОЛЬ.$$

Теплота сгорания:

$$Q = \nu Q_{\rm m} = 22.7 \text{ моль} \cdot 2200 \text{ кДж/моль} = 5 \cdot 10^4 \text{ кДж}.$$

Работа, совершенная двигателем:

$$A = \eta Q = 0.4 \cdot 5.10^4 = 2.10^4$$
 кДж.

Время работы двигателя на природном газе:

$$t = A / W = 2.10^4 \text{ кДж} / 60 \text{ кВт} = 333 \text{ c} = 5.6 \text{ мин}.$$

2) а) Объем углекислого газа при производстве водорода:

$$\begin{aligned} CH_4 + 2H_2O &\rightarrow CO_2 + 4H_2 \\ \nu(CO_2) &= \nu(H_2) \, / \, 4 = 125 \text{ моль.} \\ V(CO_2) &= \nu \cdot V_m = 125 \text{ моль} \cdot 0.0224 \text{ м}^3 / \text{моль} = 2.8 \text{ м}^3. \end{aligned}$$

б) Объем углекислого газа при сжигании пропана:

$$C_3H_8+5O_2 \rightarrow 3CO_2+4H_2O$$
 $\nu(CO_2)=3\cdot22.7=68.1$ моль. $V(CO_2)=\nu\cdot V_m=68.1$ моль $\cdot 0.0224$ м³/моль $=1.5$ м³. Ответ: 1) 6.7 мин и 5.6 мин, 2) а) 2.8 м³, б) 1.5 м³.

- **6.4.** Автомобили, двигатели которых работают на водороде, называют более «зелеными», т. е. экологически более чистыми, чем те, которые используют углеводородное топливо. Сравним эти двигатели.
- 1) Сколько килограммов водорода потребуется для работы в течение двух часов автомобильного двигателя мощностью 75 кВт?
- 2) Сколько кубометров углекислого газа (н. у.) выделится в атмосферу при производстве такого количества водорода из метана в реакции с парами воды?
- 3) Сколько килограммов сжиженного газа (примем, что это пропан) потребуется для двухчасовой работы такого же двигателя, и сколько при этом образуется углекислого газа (в ${\rm M}^3$, н. у.)?

Известно, что кпд водородного двигателя -20%, кпд двигателя на газе -40%, теплота сгорания водорода -240 кДж/моль, теплота сгорания пропана -2200 кДж/моль. (20 баллов)

Решение. 1) Работа, совершенная водородным двигателем:

$$A = Wt = 75 \text{ кВт} \cdot 7200 \text{ c} = 5.4 \cdot 10^5 \text{ кДж}.$$

Необходимая теплота:

$$Q = A / \eta = 5.4 \cdot 10^5 / 0.2 = 2.7 \cdot 10^6$$
 кДж.

Количество вещества водорода:

$$\nu(H_2) = Q / Q_m = 2.7 \cdot 10^6 \text{ кДж} / 240 \text{ кДж/моль} = 11250 моль.}$$

Масса водорода:

$$V(H_2) = v \cdot M = 11250 \text{ моль} \cdot 0.002 \text{ кг/моль} = 22.5 \text{ кг.}$$

2) Найдем объем углекислого газа:

$$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$$

 $\nu(CO_2) = \nu(H_2) / 4 = 2813$ моль.
 $V(CO_2) = \nu \cdot V_m = 2813$ моль $\cdot 0.0224$ м³/моль $= 63$ м³.

3) Теперь рассмотрим двигатель на сжиженном газе. Необходимая теплота:

$$Q = A / \eta = 5.4 \cdot 10^5 / 0.4 = 1.35 \cdot 10^6$$
 кДж.

Количество вещества пропана:

$$v(C_3H_8) = Q / Q_m = 1.35 \cdot 10^6 \; кДж / 2200 \; кДж/моль = 613.6 моль.$$

Масса пропана:

$$m(C_3H_8) = v \cdot M = 613.6 \text{ моль} \cdot 0.044 \text{ кг/моль} = 27 \text{ кг}.$$

Найдем объем углекислого газа:

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$
 $\nu(CO_2) = 3.613.6 = 1841$ моль.
 $V(CO_2) = \nu \cdot V_m = 1841$ моль $\cdot 0.0224$ м³/моль $= 41$ м³.

Получается, что двигатель на сжиженном газе более экологичен, чем водородный в отношении выделения углекислого газа.

Ответ: 1) 22.5 кг, 2) 63 M^3 , 3) 27 кг и 41 M^3 .

ЗАДАНИЕ 7

7.1. Простые вещества **A** и **Б** бурно реагируют между собой с образованием продукта **B**. При обработке **B** углекислым газом выделяется вещество **Б** и образуется продукт Γ , содержащий 8.70% углерода и 34.78% кислорода по массе. Назовите неизвестные вещества, напишите уравнения реакций. Ответ подтвердите расчетами. (20 баллов)

Решение. Продукт Γ – карбонат калия. Подтвердим расчетом – в карбонате калия $\omega(C) = 12 / 138 = 0.087$ (или 8.7%),

$$\omega(O) = 3 \cdot 16 / 138 = 0.3478$$
 (или 34.78%).

Уравнения описанных в задании реакций:

$$K + O_2 \rightarrow KO_2,$$

 $4KO_2 + 2CO_2 \rightarrow 2K_2CO_3 + 3O_2 \uparrow.$
Ombem: $\mathbf{A} - K$, $\mathbf{F} - O_2$, $\mathbf{B} - KO_2$, $\mathbf{\Gamma} - K_2CO_3$.

7.2. Простые вещества **A** и **Б** бурно реагируют между собой с образованием продукта **B**. При обработке **B** углекислым газом выделяется вещество **Б** и образуется продукт Γ , содержащий 11.3% углерода и 45.3% кислорода по массе. Назовите неизвестные вещества, напишите уравнения реакций. Ответ подтвердите расчетами. (20 баллов)

Решение. Продукт Γ – карбонат натрия. Подтвердим расчетом – в карбонате натрия:

$$\omega(C) = 12 / 106 = 0.113$$
 (или 11.3%), $\omega(O) = 3.16 / 106 = 0.453$ (или 45.3%).

Уравнения описанных в условии реакций:

$$2Na + O_2 \rightarrow Na_2O_2,$$

$$2Na_2O_2 + 2CO_2 \rightarrow 2Na_2CO_3 + O_2\uparrow.$$
Ombem: $\mathbf{A} - Na$, $\mathbf{F} - O_2$, $\mathbf{B} - Na_2O_2$, $\mathbf{\Gamma} - Na_2CO_3$.

7.3. Твердое простое вещество **A** массой 6.4 г обработали хлором и получили единственный продукт **Б**, жидкий при обычных условиях. При внесении **Б** в избыток воды образуется 4.8 г вещества **A**, а из получившегося сильнокислого раствора при нагревании выделяется газ **B**, имеющий плотность по воздуху 2.2. Определите неизвестные вещества, напишите уравнения реакций. Ответ подтвердите расчетами. (20 баллов)

Решение. Найдем молярную массу газа В:

$$M(\mathbf{B}) = 2.2 \cdot 29 = 64 \, \text{г/моль},$$

подходит SO₂. Уравнения реакций:

$$2S + Cl2 \rightarrow S2Cl2,$$

$$2S2Cl2 + 2H2O \rightarrow 3S + 4HCl + SO2 \uparrow.$$

Подтвердим расчетами по уравнениям:

$$u_1(S) = 6.4 / 32 = 0.2 \text{ моль},$$
 $u(S_2Cl_2) = 0.2 / 2 = 0.1 \text{ моль},$
 $u_2(S) = 0.1 \cdot 3 / 2 = 0.15 \text{ моль},$
 $m_2(S) = 0.15 \cdot 32 = 4.8 \text{ г} - \text{совпадает с условием задачи}.$

Ответ: A - S, $B - S_2Cl_2$, $B - SO_2$.

7.4. Твердое простое вещество **A** массой 1.00 г реагирует с избытком газа **Б**, образуя кристаллический продукт **B** массой 6.73 г. Вещество **B** реагирует с водой в мольном соотношении 1:1, образуя дымящую на воздухе жидкость Γ , содержащую 10.42% кислорода по массе. Определите неизвестные вещества и напишите уравнения реакций. Ответ подтвердите расчетами. (20 баллов)

Решение. Уравнения реакций:

$$2P + 5Cl_2 \rightarrow 2PCl_5$$
,
 $PCl_5 + H_2O \rightarrow POCl_3 + 2HCl$.

Массовая доля кислорода в $POCl_3$ (жидкость Γ):

$$\omega(O) = 16 / 153.5 = 0.1042 = 10.42\%$$
.

Подтвердим расчетами по уравнениям:

$$\nu(P) = 1.00 / 31 = 0.0323$$
 моль = $\nu(PCl_5)$.

 $m(PCl_5) = 0.0323 \cdot 208.5 = 6.73 \Gamma -$ совпадает с условием задачи.

Omeem: $\mathbf{A} - \mathbf{P}$, $\mathbf{B} - \mathbf{Cl}_2$, $\mathbf{B} - \mathbf{PCl}_5$, $\mathbf{\Gamma} - \mathbf{POCl}_3$.

ЗАКЛЮЧИТЕЛЬНЫЙ ТУР, 10-11 КЛАССЫ

ВАРИАНТ 1

1.1. Красный цвет крови большинства позвоночных обусловлен гемоглобином. Рассчитайте массовую долю водорода в гемоглобине $C_{2954}H_{4516}N_{780}O_{806}S_{12}Fe_4$. (4 балла)

Решение. Молярная масса гемоглобина

$$M = 2954 \cdot 12 + 4516 \cdot 1 + 780 \cdot 14 + 806 \cdot 16 + 12 \cdot 32 + 4 \cdot 56 = 64388$$
 г/моль.

Массовая доля водорода составляет

$$\omega(H) = 4516 / 64388 = 0.0701$$
 (или 7.01%).

Ответ: 7.01%.

2.1. Напишите реакции взаимодействия кристаллических хлорида калия и бромида калия с концентрированной серной кислотой. Сравнив эти реакции, определите, какой из галогенидионов проявляет более сильные восстановительные свойства. (6 баллов)

Решение. Уравнения реакций:

$$KCl + H_2SO_4(конц) \rightarrow HCl\uparrow + KHSO_4;$$

2 $KBr + 3H_2SO_4(конц) \rightarrow Br_2 + SO_2\uparrow + 2KHSO_4 + 2H_2O.$

Реакция хлорида калия с серной кислотой не приводит к изменению степени окисления хлора, а в реакции бромида калия с серной кислотой происходит окисление бромид-иона до Br₂. Бромид-ион – более сильный восстановитель.

3.4. В 5.6 л (н. у.) газообразного продукта взаимодействия фтора и простого вещества \mathbf{X} содержится $10.535\cdot 10^{23}$ атомов и $10.535\cdot 10^{24}$ электронов. Определите неизвестный газ.

(8 баллов)

Решение. Неизвестное вещество имеет формулу XF_n . Количество вещества

$$\nu(XF_n) = 0.25$$
 моль.

Значит, число молекул в этой порции составляет

$$N(\text{мол}) = 0.25 \cdot N_{\text{A}}$$

а число атомов в одной молекуле равно

$$N(aT) = 10.535 \cdot 10^{23} / (0.25 \cdot 6.02 \cdot 10^{23}) = 7.$$

Тогда число атомов фтора в молекуле равно n = 7 - 1 = 6, т.е. формула газа — $\mathbf{X}\mathbf{F}_6$.

Число электронов в одной молекуле $N(e) = 10.535 \cdot 10^{24} / (0.25 \cdot 6.02 \cdot 10^{23}) = 70.$

$$70 = Z + 6 \cdot 9,$$

$$Z = 16.$$

Элемент X – сера, неизвестный газ – SF_6 .

Ответ: SF₆.

4.2. Сколько существует изомерных дихлорциклобутанов? Изобразите их структурные формулы. (8 баллов)

Решение.

Соединения **3** и **4** являются оптическими изомерами *транс*-1,2-дихлорциклобутана. Молекула соединения **5** (*транс*-1,3-дихлорциклобутан) обладает элементом симметрии (плоскость симметрии, показана пунктиром), следовательно, она не имеет оптических изомеров.

Ответ: 6 изомерных дихлорциклобутанов.

5.3. К 100 г насыщенного при 20°C раствора хлорида двухвалентного металла \mathbf{X} добавили 14.6 г безводной соли, после чего в осадок выпало 37.6 г кристаллогидрата состава \mathbf{X} Cl₂· 4H₂O. Определите неизвестный металл, если растворимость его безводного хлорида при 20°C составляет 68.1 г на 100 г воды. (10 баллов)

Решение. Массовая доля XCl₂ в насыщенном растворе при 20°C составляет

$$\omega(\mathbf{X}Cl_2) = 68.1 / 168.1 = 0.405$$

следовательно, в 100 г исходного раствора находилось 40.5 г соли.

После добавления 14.6 г безводной соли к этому раствору выпал осадок кристаллогидрата, над которым находится насыщенный (40.5%-ный) раствор соли:

$$\omega(\mathbf{X}Cl_2) = m(\mathbf{X}Cl_2) / m(p-pa) = \frac{40.5 + 14.6 - x}{100 + 14.6 - 37.6} = 0.405,$$

где x — масса соли в осадке кристаллогидрата. Из полученного уравнения

$$(55.1 - x) / 77 = 0.405$$

находим x = 23.915 (г). Пусть M – молярная масса металла. Массовую долю безводной соли в кристаллогидрате, равную

$$\omega = 23.915 / 37.6 = 0.636$$

можно выразить как $\frac{M+71}{M+71+18\cdot 4}$. Тогда из уравнения

$$\frac{M+71}{M+143} = 0.636$$

получаем $M \approx 55$ г/моль (это марганец Mn).

Ответ: марганец.

6.6. Дипептид, образованный природными аминокислотами, подвергли щелочному гидролизу. После сплавления продуктов гидролиза со щёлочью и обработки избытком азотистой кислоты была получена смесь пентандиола-1,5 и пропанола-1. Установите возможное строение дипептида. Напишите уравнения протекающих реакций. (10 баллов)

Решение. Основное свойство пептидов – способность к гидролизу. Запишем уравнение щелочного гидролиза дипептида, образованного двумя разными аминокислотами:

Сплавление продуктов гидролиза со щёлочью (реакция декарбоксилирования) приводит к образованием соответствующих аминов:

$$H_{2}N - CH - C - OK + KOH \xrightarrow{t^{0}} H_{2}N - CH_{2} - R_{1} + K_{2}CO_{3}$$

$$H_{2}N - CH - C - OK + KOH \xrightarrow{t^{0}} H_{2}N - CH_{2} - R_{2} + K_{2}CO_{3}$$

$$R_{2}$$

Образовавшиеся первичные амины реагируют с избытком азотистой кислоты, образуя спирты:

$$H_2N-CH_2-R_1 + HNO_2 \rightarrow HO-CH_2-R_1 + N_2 + H_2O,$$

 $H_2N-CH_2-R_2 + HNO_2 \rightarrow HO-CH_2-R_2 + N_2 + H_2O.$

В составе дипептида могут быть и аминокислоты, содержащие дополнительные карбоксильные группы (например, глутаминовая кислота) или аминогруппы (например, лизин). Можно заключить, что один из радикалов принадлежит молекуле лизина, а второй – глутаминовой кислоте. Таким образом, можно предположить две формулы исходного дипептида, отвечающих условию задачи (2 изомера):

Реакция гидролиза:

$$\begin{array}{c} O \\ H_2N-CH-C-NH-CH-COOH + 3NaOH \longrightarrow H_2N-(CH_2)_4-CH-COONa + \\ (CH_2)_4-NH_2 (CH_2)_2 & NH_2 \\ COOH \\ &+ NaOOC-(CH_2)_2-CH-COONa + 2H_2O \\ NH_2 \end{array}$$

Прокаливание:

$$H_2N$$
—(CH₂)₄—СH—COONa + NaOH $\xrightarrow{t^0}$ H_2N —(CH₂)₄—CH₂—NH₂ + Na₂CO₃ NH₂

NaOOC (CH₂)₂ CH COONa + 2NaOH
$$\stackrel{t^0}{\longrightarrow}$$
 CH₃ CH₂ CH₂ NH₂ + 2Na₂CO₃ NH₂

Реакции с азотистой кислотой:

$$H_2N-(CH_2)_5-NH_2+2HNO_2 \rightarrow HO-(CH_2)_5-OH+2N_2\uparrow+2H_2O, \\ H_2N-CH_2-CH_2-CH_3+HNO_2 \rightarrow HO-CH_2-CH_2-CH_3+N_2\uparrow+H_2O.$$

Ответ: дипептид образован лизином и глутаминовой кислотой.

Участники олимпиады предложили еще одно решение. Пропанол-1 может образоваться в ходе химических превращений, описанных в задаче, не из глутаминовой, а из у-аминомасляной кислоты. Это природная аминокислота, выполняющая важные функции в организме:

Вариант решения с лизином и *ү*-аминомасляной кислотой при условии правильной записи всех реакций принимался как верный.

7.3. Разложение пероксида водорода в водном растворе протекает как реакция первого порядка:

$$H_2O_2 \xrightarrow{t^o} H_2O + 1/2 O_2$$
.

Раствор, содержащий 72 г H_2O_2 , выдерживали при определенной температуре в течение 30 мин, и за это время образовалось 20.75 л кислорода (измерено при н. у.). Рассчитайте период полупревращения пероксида водорода при этой температуре. (10 баллов)

Решение. Для реакции первого порядка зависимость массы реагента от времени:

$$m(t)=m_0\left(\frac{1}{2}\right)^{\frac{t}{\tau_{1/2}}}$$

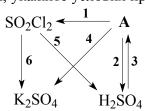
По условию, получено кислорода

$$v(O_2) = 20.75 / 22.4 = 0.926 \text{ моль},$$

значит, пероксида разложилось

$$v(H_2O_2) = 0.926 \cdot 2 = 1.853$$
 моль, $m(H_2O_2) = 1.853 \cdot 34 = 63$ г.

Осталось пероксида $m(H_2O_2) = 72 - 63 = 9$ г. Тогда


$$9 = 72 \cdot \left(\frac{1}{2}\right)^{\frac{30}{\tau_{1/2}}}$$

$$\left(\frac{1}{2}\right)^{\frac{30}{\tau_{1/2}}} = \frac{9}{72} = \frac{1}{8} = \left(\frac{1}{2}\right)^3.$$

отсюда
$$\frac{30}{\tau_{_{1/2}}}$$
 = 3, $\tau_{_{1/2}}$ = 30 /3 = 10 мин.

Ответ: 10 мин.

8.2. Запишите уравнения реакций, соответствующих следующей схеме превращений. Определите неизвестное вещество **A**, укажите условия протекания реакций. (12 баллов)

Решение. Один из вариантов решения:

- 1) $SO_2 + Cl_2 \xrightarrow{\kappa a \tau} SO_2Cl_2$,
- 2) $SO_2 + I_2 + H_2O \rightarrow H_2SO_4 + 2HI$,
- 3) $2H_2SO_4(конц.) + Na_2SO_3(тв.) \rightarrow SO_2\uparrow + 2NaHSO_4 + H_2O$

или $2H_2SO_4(\kappa o H u.) + Cu \xrightarrow{t^o} CuSO_4 + SO_2 \uparrow + 2H_2O$,

- 4) $5SO_2 + 2KMnO_4 + 2H_2O \rightarrow K_2SO_4 + 2MnSO_4 + 2H_2SO_4$,
- 5) $SO_2Cl_2 + 2H_2O \rightarrow H_2SO_4 + 2HCl$,
- 6) $SO_2Cl_2 + 4KOH \rightarrow K_2SO_4 + 2KCl + 2H_2O$.

Ответ: A - SO₂.

9.3. При полном сгорании углеводорода образовалась газовая смесь с плотностью по водороду 17.0. Известно, что этот углеводород не обесцвечивает раствор брома в тетрахлорметане, а при хлорировании на свету образуются два монохлорпроизводных. Установите структурную формулу углеводорода и предложите способ его получения из

метана (напишите уравнения реакций и укажите условия их протекания). Вычислите объем кислорода (25°C, 1 атм), необходимый для сжигания 10 г данного углеводорода. (16 баллов)

Решение. Реакция полного сгорания углеводорода C_xH_v:

$$C_xH_v + (x+0.25v)O_2 \xrightarrow{t} xCO_2 + 0.5vH_2O.$$

Найдем среднюю молярную массу образовавшейся газовой смеси (CO₂ и H₂O):

$$M_{\rm cp} = 17 \cdot 2 = 34$$
 г/моль.

Выразим среднюю молярную массу смеси через молярные массы и количества компонентов смеси:

$$M_{\rm cp} = \frac{44x + 18 \cdot 0.5y}{x + 0.5y} = 34.$$

Отсюда получаем соотношение y = 1.25x. Установим простейшую формулу исходного углеводорода: x : y = 1 : 1.25 = 4 : 5, простейшая формула C_4H_5 , ей не соответствует ни один углеводород. Подходит углеводород C_8H_{10} , и, поскольку при хлорировании образуется смесь двух изомеров, то искомый углеводород – это этилбензол:

Реакция сжигания:

$$C_8H_{10} + 10.5O_2 \xrightarrow{t} 8CO_2 + 5H_2O,$$
 $\nu(C_8H_{10}) = 10 / 106 = 0.094$ моль,
 $\nu(O_2) = 10.5 \cdot 0.094 = 0.987$ моль,
 $V(O_2) = \frac{\nu RT}{p} = \frac{0.987 \cdot 8.31 \cdot 298}{101.3} = 24.13$ л.

Один из возможных путей синтеза этилбензола из метана:

1.
$$2CH_4 \xrightarrow{1500 \text{ °C}} HC \equiv CH + 3H_2$$

2. $3HC \equiv CH \xrightarrow{C_{akr}} 600 \text{ °C}$

3. $HC \equiv CH + 2H_2 \xrightarrow{Pt, p} C_2H_6$

4. $C_2H_6 + Br_2 \xrightarrow{hv} C_2H_5Br + HBr$

5. $AlCl_3 \xrightarrow{C_2H_5} HBr$

Ответ: этилбензол, 24.13 л.

10.1. Оксид металла состава $\mathbf{X}_2\mathrm{O}_3$ массой 35.7 г обработали хлором в присутствии избытка угля при температуре $1000^{\circ}\mathrm{C}$ и получили вещество \mathbf{A} и газ \mathbf{B} . Газ \mathbf{B} был пропущен через избыток аммиачного раствора оксида серебра, что привело к выпадению 226.8 г осадка. Вещество \mathbf{A} обработали 574.71 мл 15%-ного раствора гидроксида натрия с плотностью 1.16 г/мл. Определите состав и массу образовавшегося при этом осадка, а также массовые доли веществ в растворе над осадком. Предложите способ получения металла \mathbf{X} из исходного оксида. Напишите уравнения всех упомянутых реакций. (16 баллов)

Решение. При высокотемпературном хлорировании оксида $\mathbf{X}_2\mathrm{O}_3$ в присутствии угля образуется хлорид этого металла (вещество \mathbf{A}) и оксид углерода(II) (газ \mathbf{B}):

$$\mathbf{X}_2\mathrm{O}_3 + 3\mathrm{C} + 0.5n\mathrm{Cl}_2 \xrightarrow{\ \iota \ } 2\mathbf{X}\mathrm{Cl}_n + 3\mathrm{CO}^{\uparrow}.$$

Оксид углерода(II) при пропускании через аммиачный раствор оксида серебра восстанавливает серебро до металла:

$$2[Ag(NH_3)_2]OH + CO \rightarrow 2Ag \downarrow + (NH_4)_2CO_3 + 2NH_3.$$

$$v(Ag) = 226.8 / 108 = 2.1$$
 моль, $v(CO) = 0.5v(Ag) = 1.05$ моль, $v(X_2O_3) = 1.05 / 3 = 0.35$ моль.

Значит, $M(\mathbf{X}_2 \mathbf{O}_3) = 35.7 / 0.35 = 102$ г/моль, отсюда $M(\mathbf{X}) = 27$ г/моль. Металл \mathbf{X} – алюминий, его хлорид (вещество \mathbf{A}) – $AlCl_3$, $v(AlCl_3) = 2v(Al_2O_3) = 0.7$ моль.

Для обработки 0.7 моль хлорида алюминия было взято 574.71·1.16 = 666.66 г раствора гидроксида натрия, содержащего

$$v(NaOH) = 666.66 \cdot 0.15 / 40 = 2.5 моль.$$

При взаимодействии хлорида алюминия с раствором гидроксида натрия протекают следующие реакции:

AlCl₃ + 4NaOH
$$\rightarrow$$
 Na[Al(OH)₄] + 3NaCl,
y моль 4y y 3y
AlCl₃ + 3NaOH \rightarrow Al(OH)₃\ + 3NaCl.
(0.7-y) 3(0.7-y) (0.7-y) 3(0.7-y)

$$v(\text{NaOH}) = 2.5 \text{ моль} = 4y + 3(0.7 - y), \text{ тогда } y = 0.4 \text{ моль}.$$
 $v(\text{Al}(\text{OH})_3) = 0.7 - 0.4 = 0.3 \text{ моль},$ $m(\text{Al}(\text{OH})_3) = 78 \cdot 0.3 = 23.4 \text{ г}.$

В растворе над осадком гидроксида алюминия содержатся соли Na[Al(OH)₄] и NaCl:

$$v(Na[Al(OH)_4]) = 0.4$$
 моль,
 $v(NaCl) = 3y + 3(0.7 - y) = 2.1$ моль.

Масса раствора составляет

$$m(p-pa) = m(AlCl_3) + m(NaOH(p-p)) - m(Al(OH)_3) = 133.5 \cdot 0.7 + 666.66 - 23.4 = 736.71 г.$$

 $\omega(Na[Al(OH)_4]) = 118 \cdot 0.4 / 736.71 = 0.064$ (или 6.40%),
 $\omega(NaCl) = 58.5 \cdot 2.1 / 736.71 = 0.1667$ (или 16.67%).

Алюминий получают электролизом расплава оксида алюминия в криолите Na₃AlF₆:

Ответ: 23.4 г осадка Al(OH)₃; 6.40% Na[Al(OH)₄], 16.67% NaCl.

ВАРИАНТ 2

1.3. Зеленый цвет фотосинтезирующих организмов обусловлен хлорофиллом. Рассчитайте массовую долю углерода в хлорофилле $C_{55}H_{72}O_5N_4Mg$. (4 балла)

Решение. Молярная масса хлорофилла

$$M = 55 \cdot 12 + 72 \cdot 1 + 5 \cdot 16 + 4 \cdot 14 + 1 \cdot 24 = 892$$
 г/моль.

Массовая доля углерода составляет

$$\omega(C) = 660 / 892 = 0.7399$$
 (или 73.99%).

Ответ: 73.99%.

2.5. Напишите реакции взаимодействия кристаллических хлорида калия и иодида калия с концентрированной серной кислотой. Сравнив эти реакции, определите, какой из галогенидионов проявляет более сильные восстановительные свойства. (6 баллов)

Решение. Уравнения реакций:

$$KCl + H_2SO_4(конц) \rightarrow HCl\uparrow + KHSO_4;$$

8 $KI + 9H_2SO_4(конц) \rightarrow 4I_2 + H_2S\uparrow + 8KHSO_4 + 4H_2O.$

Реакция хлорида калия с серной кислотой не приводит к изменению степени окисления хлора, а в реакции иодида калия с серной кислотой происходит окисление иодид-иона до I_2 . (Как правильное, принимались уравнения реакций KI с серной кислотой, в которых сера восстанавливается до S^0 или до SO_2). Иодид-ион — более сильный восстановитель.

3.2. В 4.48 л (н. у.) газообразного продукта взаимодействия мышьяка с одним из галогенов содержится $7.224 \cdot 10^{23}$ атомов и $9.3912 \cdot 10^{24}$ электронов. Определите неизвестный газ.

(8 баллов)

Pешение. Неизвестное газообразное вещество имеет формулу AsHal $_n$. Количество вещества равно

$$\nu$$
(AsHal_n) = 4.48 / 22.4 = 0.2 моль.

Значит, число молекул вещества в этой порции составляет

$$N(\text{мол}) = 0.2 \cdot N_{\text{A}},$$

а число атомов в одной молекуле равно

$$N(aT) = 7.224 \cdot 10^{23} / (0.2 \cdot 6.02 \cdot 10^{23}) = 6.$$

Тогда число атомов галогена в молекуле равно n = 6 - 1 = 5, т.е. формула газа AsHal₅. Число электронов в одной молекуле составляет

$$N(e) = 9.3912 \cdot 10^{24} / (0.2 \cdot 6.02 \cdot 10^{23}) = 78.$$

 $78 = 33 + 5 \cdot Z$,
 $Z = 9$.

Неизвестный элемент – фтор, искомый газ – AsF_5 .

Ответ: AsF₅.

4.6. Сколько существует изомерных динитроциклопентанов? Изобразите их структурные формулы. (8 баллов)

Решение.

Изомеры 3 и 4, а также 5 и 6 являются оптическими изомерами.

Ответ: 7 изомерных динитроциклопентанов.

5.5. К 100 г насыщенного при 20°C раствора карбоната одновалентного металла \mathbf{X} добавили 10.1 г безводной соли, после чего в осадок выпало 43.1 г кристаллогидрата состава $\mathbf{X}_2\mathrm{CO}_3 \cdot 10\mathrm{H}_2\mathrm{O}$. Определите неизвестный металл, если растворимость его безводного карбоната при 20°C составляет 21.5 г на 100 г воды. (10 баллов)

Решение. Массовая доля X_2CO_3 в насыщенном растворе при 20°C составляет

$$\omega(\mathbf{X}_2 \mathbf{CO}_3) = 21.5 / 121.5 = 0.177,$$

следовательно, в 100 г исходного раствора находилось 17.7 г соли.

После добавления безводной соли к этому раствору выпал осадок кристаллогидрата, над которым находится насыщенный (17.7%-ный) раствор соли:

$$\omega(\mathbf{X}_2\text{CO}_3) = m(\mathbf{X}_2\text{CO}_3) / m(\text{p-pa}) = \frac{17.7 + 10.1 - x}{100 + 10.1 - 43.1} = 0.177,$$

где x — масса соли в осадке кристаллогидрата. Из полученного уравнения

$$\frac{27.8 - x}{67} = 0.177$$

находим x = 15.94 (г). Пусть M — молярная масса металла. Массовую долю соли в осадке кристаллогидрата, равную

$$\omega = 15.94 / 43.1 = 0.37$$

можно выразить как $\frac{2M+60}{2M+60+10\cdot 18}$. Тогда из уравнения

$$\frac{2M + 60}{2M + 240} = 0.37$$

получаем $M \approx 23$ г/моль (это натрий Na).

Ответ: натрий.

6.4. Дипептид, образованный природными аминокислотами, подвергли щелочному гидролизу. После сплавления продуктов гидролиза со щёлочью и обработки избытком азотистой кислоты была получена смесь пентандиола-1,5 и метанола. Установите возможное строение дипептида. Напишите уравнения протекающих реакций. (10 баллов)

Решение. Основное свойство пептидов – способность к гидролизу. Запишем уравнение щелочного гидролиза дипептида, образованного двумя разными аминокислотами:

Сплавление продуктов гидролиза со щёлочью (реакция декарбоксилирования) приводит к образованием соответствующих аминов:

$$H_2N$$
— CH — C — OK + KOH $\xrightarrow{t^0}$ H_2N — CH_2 — R_1 + K_2CO_3

$$H_2N$$
— CH — C — OK + KOH $\stackrel{t^0}{\longrightarrow}$ H_2N — CH_2 — R_2 + K_2CO_3

Образовавшиеся первичные амины реагируют с избытком азотистой кислоты, образуя спирты:

$$H_2N-CH_2-R_1 + HNO_2 \rightarrow HO-CH_2-R_1 + N_2 + H_2O,$$

 $H_2N-CH_2-R_2 + HNO_2 \rightarrow HO-CH_2-R_2 + N_2 + H_2O.$

В составе дипептида могут быть и аминокислоты, содержащие дополнительные карбоксильные группы (например, глутаминовая кислота) или аминогруппы (например, лизин). Один из радикалов принадлежит молекуле лизина, а второй – глицину. Можно предположить две формулы исходного дипептида, отвечающих условию задачи:

Реакция гидролиза:

$$\begin{array}{c} O \\ H_2N-CH-C-NH-CH_2-COOH + 2NaOH \longrightarrow H_2N-(CH_2)_4-CH-COONa + \\ (CH_2)_4-NH_2 & NH_2 \\ \end{array}$$

$$\begin{array}{c} + H_2C-COONa + H_2O \\ NH_2 \end{array}$$

Прокаливание:

$$H_2N$$
— $(CH_2)_4$ — CH — $COONa + NaOH$ $\stackrel{t^0}{\longrightarrow}$ H_2N — $(CH_2)_4$ — CH_2 — $NH_2 + Na_2CO_3$
 NH_2
 H_2C — $COONa + NaOH$ $\stackrel{t^0}{\longrightarrow}$ CH_3 — $NH_2 + Na_2CO_3$
 NH_2

Реакции с азотистой кислотой:

$$H_2N-(CH_2)_5-NH_2+2HNO_2 \rightarrow HO-(CH_2)_5-OH+2N_2\uparrow+2H_2O,$$

 $H_2N-CH_3+HNO_2 \rightarrow HO-CH_3+N_2+H_2O.$

Ответ: дипептид образован лизином и глицином.

7.5. Разложение паров ацетона при 500°C протекает как реакция первого порядка:

$$C_3H_6O \xrightarrow{t^o} C_2H_4 + CO + H_2.$$

Порцию ацетона массой 88 г выдерживали при данной температуре в течение 72 мин и получили 29.738 л этилена (измерено при н. у.). Рассчитайте период полупревращения ацетона. (10 баллов)

Решение. Для реакции первого порядка зависимость массы реагента от времени:

$$m(t)=m_0\left(\frac{1}{2}\right)^{\frac{t}{\tau_{1/2}}}$$

По условию, получено этилена

$$v(C_2H_4) = 29.738 / 22.4 = 1.328$$
 моль,

значит, ацетона разложилось такое же количество, и

$$m$$
(ацетона) = 1.328 · 58 = 77 г.

Осталось m(ацетона) = 88 - 77 = 11 г. Тогда

$$11 = 88 \cdot \left(\frac{1}{2}\right)^{\frac{72}{\tau_{1/2}}}$$
$$\left(\frac{1}{2}\right)^{\frac{72}{\tau_{1/2}}} = \frac{11}{88} = \frac{1}{8} = \left(\frac{1}{2}\right)^{3},$$

отсюда
$$\frac{72}{\tau_{_{1/2}}}$$
 = 3, $\tau_{_{1/2}}$ = 72 /3 = 24 мин.

Ответ: 24 мин.

8.1. Запишите уравнения реакций, соответствующих следующей схеме превращений. Определите неизвестное вещество **A**, укажите условия протекания реакций. (12 баллов)

$$HIO_{3} \xrightarrow{1 \atop 2} A$$

$$\downarrow 3$$

$$Ba(IO_{3})_{2} \xrightarrow{4} ICl_{3}$$

Решение. Один из вариантов решения:

- 1) $HIO_3 + 5HI \rightarrow 3I_2 \downarrow + 3H_2O$,
- 2) $I_2 + 5H_2O_2$ (30%) $\xrightarrow{t^{\circ}}$ 2HIO₃ + 4H₂O

или $I_2 + 10 HNO_3$ (конц.) $\xrightarrow{t^{\circ}} 2 HIO_3 + 10 NO_2 \uparrow + 4 H_2 O$,

- 3) $I_2 + 3Cl_2 \xrightarrow{CCl4} 2ICl_3$
- 4) $6ICl_3 + 12Ba(OH)_2 \rightarrow 2Ba(IO_3)_2 + BaI_2 + 9BaCl_2 + 12H_2O$,
- 5) $6I_2 + 6Ba(OH)_2 \rightarrow Ba(IO_3)_2 + 5BaI_2 + 6H_2O$,
- 6) Ba(IO₃)₂ + H₂SO₄(pa₃ δ .) → BaSO₄↓ + 2HIO₃.

Ответ: $A - I_2$.

9.5. При полном сгорании углеводорода образовалась газовая смесь с плотностью по водороду 18.455. Известно, что 0.01 моль этого углеводорода может обесцветить 32 г 10%-го раствора брома в тетрахлорметане. Установите структурную формулу углеводорода и предложите способ его получения из метана (напишите уравнения реакций и укажите условия их протекания). Вычислите объем кислорода (25°C, 1 атм), необходимый для сжигания 10 г данного углеводорода. (16 баллов)

Решение.

Реакция полного сгорания углеводорода С_хН_у:

$$C_xH_v + (x+0.25y)O_2 \xrightarrow{t} xCO_2 + 0.5yH_2O.$$

Найдем среднюю молярную массу образовавшейся газовой смеси (CO₂ и H₂O):

$$M_{\rm cp} = 18.455 \cdot 2 = 36.91$$
 г/моль.

Выразим среднюю молярную массу смеси через молярные массы и количества компонентов смеси:

$$M_{\rm cp} = \frac{44x + 18 \cdot 0.5y}{x + 0.5y} = 36.91$$

Отсюда получаем соотношение 1.333y = x. Установим простейшую формулу исходного углеводорода: x:y=4:3, простейшая формула C_4H_3 , такой формуле не соответствует ни один углеводород. Истинная формула углеводорода C_8H_6 . По условию, 0.01 моль углеводорода присоединяет бром в количестве

$$v(Br_2) = 32 \cdot 0.1 / 160 = 0.02$$
 моль.

Если при бромировании требуется двукратное количество брома, то исходный углеводород – это алкин или диен. Подходящий углеводород – фенилацетилен:

$$C\equiv CH$$
 $+2Br_2$
 CBr_2CHBr_2

Реакция сжигания:

$$C_8H_6 + 9.5O_2 \xrightarrow{t} 8CO_2 + 3H_2O,$$
 $v(C_8H_6) = 10 / 102 = 0.098$ моль,
 $v(O_2) = 9.5 \cdot 0.098 = 0.931$ моль,
 $V(O_2) = \frac{vRT}{p} = \frac{0.931 \cdot 8.31 \cdot 298}{101.3} = 22.76$ л.

Один из возможных путей синтеза фенилацетилена из метана:

1.
$$2CH_4 \longrightarrow HC \equiv CH + 3H_2$$

2. $3HC \equiv CH \xrightarrow{C_{akrr}} C_{000} \circ C$

3. $HC \equiv CH + 2H_2 \xrightarrow{Pt, p} C_2H_6$

4. $C_2H_6 + Br_2 \xrightarrow{hv} C_2H_5Br + HBr$

5. $AICI_3 \longrightarrow C_2H_5$

6. $C_2H_5 \longrightarrow C_2H_5$

7. $C_2H_5 \longrightarrow C_2H_5$
 $C_2H_5 \longrightarrow$

Ответ: фенилацетилен, 22.76 л.

10.2. Оксид металла состава **X**О массой 11.25 г обработали хлором в присутствии избытка угля при температуре 1000° С и получили вещество **A** и газ **B**. Газ **B** был пропущен через избыток водного раствора хлорида палладия(II), что привело к выпадению 47.7 г осадка. Вещество **A** обработали 647.93 мл 11%-ного раствора гидроксида калия с плотностью 1.10 г/мл. Определите состав и массу образовавшегося при этом осадка, а также массовые доли веществ в растворе над осадком. Предложите способ получения металла **X** из вещества **A**. Напишите уравнения всех упомянутых реакций. (16 баллов)

Pешение. При высокотемпературном хлорировании оксида металла X состава XO в присутствии угля образуется хлорид этого металла (вещество A) и оксид углерода(II) (газ B):

$$\mathbf{XO} + \mathbf{C} + 0.5n\mathbf{Cl}_2 \xrightarrow{\mathfrak{t}^{\circ}} \mathbf{XCl}_n + \mathbf{CO} \uparrow \mathbf{A} \quad \mathbf{B}$$

Оксид углерода(II) восстанавливает палладий до металла при пропускании этого газа через водный раствор хлорида палладия:

$$PdCl_2 + CO + H_2O \rightarrow Pd \downarrow + CO_2 + 2 HCl$$

Количество палладия:

$$v(Pd) = 47.7 / 106 = 0.45$$
 моль.

Значит, M(XO) = 11.25 / 0.45 = 25 г/моль, M(X) = 9 г/моль. Металл X – бериллий, его хлорид (вещество A) – BeCl₂, $v(BeCl_2) = 0.45$ моль.

Для обработки 0.45 моль хлорида бериллия было взято $647.93 \cdot 1.10 = 712.72$ г раствора гидроксида калия, содержащего

$$v(KOH) = 712.72 \cdot 0.11 / 56 = 1.4 моль.$$

При взаимодействии хлорида бериллия с раствором гидроксида калия протекают следующие реакции:

BeCl₂ + 4KOH
$$\rightarrow$$
 K₂[Be(OH)₄] + 2KCl,
y 4y y 2y
BeCl₂ + 2KOH \rightarrow Be(OH)₂\ \downarrow + 2KCl.
(0.45-y) 2(0.45-y) (0.45-y) 2(0.45-y)

$$v(KOH) = 1.4$$
 моль = $4y + 2(0.45 - y)$, тогда $y = 0.25$ моль.

Масса осадка:

$$\nu(\text{Be(OH)}_2) = 0.2 \text{ моль}, m(\text{Be(OH)}_2) = 43 \cdot 0.2 = 8.6 \text{ г}.$$

В растворе над осадком гидроксида бериллия содержатся соли К₂[Ве(ОН)₄] и КСІ.

$$\nu(K_2[Be(OH)_4]) = y = 0.25$$
 моль, $\nu(KCl) = 2y + 2(0.45 - y) = 0.9$ моль.

Масса раствора:

$$m(p-pa) = m(BeCl_2) + m(KOH(p-p)) - m(Be(OH)_2) = 80 \cdot 0.45 + 712.72 - 8.6 = 740.12 \ \Gamma.$$
 $\omega(K_2[Be(OH)_4]) = 155 \cdot 0.25 / 740.12 = 0.0524$ (или 5.24%), $\omega(KCl) = 74.5 \cdot 0.9 / 740.12 = 0.0906$ (или 9.06%).

Бериллий получают из фторида бериллия металлотермией. Для восстановления металла используют магний или кальций:

$$BeF_2 + Mg \xrightarrow{t^{\circ}} Be + MgF_2.$$

Можно также получить бериллий электролизом расплава его хлорида в присутствии хлорида натрия:

$$\not$$
 ВеCl₂(расплав) \rightarrow Ве + Cl₂.

Ответ: 8.6 г осадка Be(OH)₂; 5.24% K₂[Be(OH)₄], 9.06% KCl.

Задание для 5-9 классов

1. Сульфат двухвалентного металла образует кристаллогидрат, в котором доля кислорода составляет 55.8% по массе и 50% по молям. Установите формулу кристаллогидрата.

Решение. Пусть формула кристаллогидрата – $MSO_4 \cdot nH_2O$. Мольная доля кислорода в кристаллогидрате составляет

$$x(O) = 0.5 = \frac{4+n}{6+3n}$$

откуда находим значение n = 2.

да находим значение
$$n=2$$
.
Выразим массовую долю кислорода в $MSO_4 \cdot 2H_2O$:
$$\omega(O) = 0.558 = \frac{6 \cdot 16}{M(M) + 32 + 4 \cdot 16 + 2 \cdot 18} ,$$

откуда определяем молярную массу металла $M(\mathbf{M}) = 40$ г/моль. Это – кальций Са. Кристаллогидрат — $CaSO_4 \cdot 2H_2O$.

Ответ: CaSO₄ ·2H₂O.

- 2. Приведите по одному примеру получения кислот:
 - а) из двух газов,
 - б) из двух жидкостей,
 - в) из жидкого и твердого вещества,
 - г) из соли и другой кислоты,
 - д) при разложении соли.

Напишите уравнения соответствующих реакций.

(10 баллов)

Ответ. Возможные варианты реакций:

- a) $H_2 + Cl_2 \rightarrow 2HCl$
- б) $SO_3 + H_2O \rightarrow H_2SO_4$
- B) $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$
- Γ) BaCl₂ + H₂SO₄ → BaSO₄↓ + 2HCl,
- д) NaHF₂ \rightarrow NaF + HF \uparrow .

Примечание: в пункте д) варианты с кислыми солями неустойчивых кислот – угольной и сернистой – не принимались, так как в этом случае при разложении образуется кислотный оксид, а не кислота. Также не принимались гидросульфаты – у щелочноземельных металлов они не существуют, а у щелочных разлагаются с выделением воды, а не серной кислоты.

3. Чистую азотную кислоту (плотность 1.51 г/мл) объемом 500 мл аккуратно прилили к одному литру воды и получили раствор объемом 1380 мл. Рассчитайте массовую долю и молярную концентрацию HNO_3 в этом растворе, а также плотность раствора. (12 баллов)

Решение. Найдем массы компонентов раствора и его массу:

$$m(\text{HNO}_3) = 500 \cdot 1.51 = 755 \text{ r},$$

 $m(\text{H}_2\text{O}) = 1000 \text{ r},$
 $m(\text{p-pa}) = 1000 + 755 = 1755 \text{ r}.$

Массовая доля кислоты:

$$\omega(HNO_3) = 755 / 1755 = 0.430$$
 (или 43.0%).

Определим молярную концентрацию кислоты:

$$ho$$
(p-pa) = 1755 г / 1380 мл = 1.27 г/мл, v (HNO₃) = 755 / 63 = 11.98 моль, c (HNO₃) = 11.98 моль / 1.38 л = 8.68 М.

Ответ: 43.0%, 8.68 M, 1.27 г/мл.

- **4.** Какие вещества вступили в реакцию, если в результате образовались следующие вещества (коэффициенты не указаны)? Напишите полные уравнения реакций.
 - a) S + HBr
 - δ) NaClO₂ + NaClO₃ + H₂O
 - B) $CaCO_3 + Cl_2$
 - Γ) $Pb_2(OH)_2CO_3 + KNO_3 + CO_2$ (12 баллов)

Omeem: a) $H_2S + Br_2 \rightarrow S \downarrow + 2HBr$,

- 6) $2ClO_2 + 2NaOH \rightarrow NaClO_2 + NaClO_3 + H_2O_4$
- B) $CaOCl_2 + CO_2 \rightarrow CaCO_3 + Cl_2$,
- Γ) $2Pb(NO_3)_2 + 2K_2CO_3 + H_2O \rightarrow Pb_2(OH)_2CO_3 + 4KNO_3 + CO_2$.
- **5.** В вашем распоряжении имеется 19.6 г серной кислоты. Как с ее помощью получить: а) 2.24 л, б) 4.48 л, в) 6.72 л, г) 8.96 л сернистого газа? Напишите уравнения реакций и приведите расчеты. Все объемы измерены при н. у. Во всех случаях серная кислота израсходована полностью. (16 баллов)

Решение. Найдем количество серной кислоты, которое одинаково во всех четырех опытах:

$$\nu(\mathrm{H}_2\mathrm{SO}_4) = 19.6 \, / \, 98 = 0.2 \, \text{моль}.$$
 a) $\mathrm{Cu} + 2\mathrm{H}_2\mathrm{SO}_4 \rightarrow \mathrm{CuSO}_4 + \mathrm{SO}_2 \uparrow + 2\mathrm{H}_2\mathrm{O}.$
$$\nu(\mathrm{SO}_2) = 0.5 \, \nu(\mathrm{H}_2\mathrm{SO}_4) = 0.1 \, \text{моль},$$

$$V(\mathrm{SO}_2) = 0.1 \cdot 22.4 = 2.24 \, \text{л}.$$
 б) $\mathrm{Na}_2\mathrm{SO}_3 + \mathrm{H}_2\mathrm{SO}_4 \rightarrow \mathrm{Na}_2\mathrm{SO}_4 + \mathrm{SO}_2 \uparrow + \mathrm{H}_2\mathrm{O}.$
$$\nu(\mathrm{SO}_2) = \nu(\mathrm{H}_2\mathrm{SO}_4) = 0.2 \, \text{моль},$$

$$V(\mathrm{SO}_2) = 4.48 \, \text{л}.$$
 в) $\mathrm{S} + 2\mathrm{H}_2\mathrm{SO}_4 \rightarrow 3\mathrm{SO}_2 \uparrow + 2\mathrm{H}_2\mathrm{O}.$
$$\nu(\mathrm{SO}_2) = 1.5 \, \nu(\mathrm{H}_2\mathrm{SO}_4) = 0.3 \, \text{моль},$$

$$V(\mathrm{SO}_2) = 6.72 \, \text{л}.$$
 г) $\mathrm{SCl}_2 + \mathrm{H}_2\mathrm{SO}_4 \rightarrow 2\mathrm{SO}_2 \uparrow + 2\mathrm{HCl}.$
$$\nu(\mathrm{SO}_2) = 2\nu(\mathrm{H}_2\mathrm{SO}_4) = 0.4 \, \text{моль},$$

$$V(\mathrm{SO}_2) = 8.96 \, \text{л}.$$

Возможны и другие варианты решения.

6. Неизвестное вещество состоит из трех элементов — бария, водорода и кислорода. 12.52 г вещества нагрели до 150°С и выдержали до постоянной массы, которая составила 6.76 г. Полученное твердое вещество прокалили при 900°С и получили после охлаждения твердый остаток массой 6.12 г. При выдерживании во влажной атмосфере этот остаток постепенно присоединяет 1.44 г воды с образованием чистого твердого вещества. Напишите уравнения всех описанных реакций. Ответ подтвердите расчетами. (20 баллов)

Решение. Исходное вещество может быть гидроксидом бария, его кристаллогидратом или кристаллогидратом пероксида бария. В любом случае после прокаливания при высокой температуре остается BaO.

$$v(BaO) = 6.12 / 153 = 0.04 \text{ моль}.$$

Всех остальных соединений бария – тоже по 0.04 моль. Найдем их молярные массы и формулы.

$$6.76 / 0.04 = 169$$
 г/моль — это соответствует BaO_2 , $12.52 / 0.04 = 313$ г/моль — это кристаллогидрат $BaO_2 \cdot 8H_2O$.

При первоначальном нагревании ВаО₂·8H₂O теряет кристаллизационную воду:

$$BaO_2 \cdot 8H_2O \xrightarrow{t} BaO_2 + 8H_2O \uparrow$$

а затем теряет кислород и превращается в оксид бария:

$$2BaO_2 \xrightarrow{t} 2BaO + O_2.$$

v(H₂O) = 1.44 / 18 = 0.08 моль.

В качестве правильного принимался также вариант с веществами $Ba(OH)_2 \cdot 8H_2O$ и $Ba(OH)_2$, хотя он не совсем точно соответствует массам в условии.

Оксид бария присоединяет двойное количество воды, это приводит к образованию моногидрата гидроксида бария:

$$BaO + 2H_2O \rightarrow Ba(OH)_2 \cdot H_2O$$
.

7. Газ X с резким запахом тяжелее водорода в 33 раза. Он легко гидролизуется даже небольшими количествами воды, превращаясь в смесь двух газов Y и Z, которая легче воздуха на 3.4%. Эта смесь полностью поглощается известковой водой, при этом выпадает белый осадок, частично растворимый в разбавленных кислотах с выделением газа Y. Газ Y входит в состав воздуха и вызывает «парниковый эффект». Определите формулы всех газов и напишите уравнения всех реакций. Найдите состав газовой смеси в объемных процентах.

(20 баллов)

Решение. Парниковый газ Y, входящий в состав воздуха, — это CO_2 . Молярная масса смеси CO_2 с газом Z:

$$M_{\rm cm} = 29 \cdot 0.966 = 28$$
 г/моль.

Поскольку $M(CO_2) > 28$ г/моль, следовательно, $M(\mathbf{Z}) < 28$ г/моль. Кроме того, известно, что \mathbf{Z} реагирует с Ca(OH)₂, образуя осадок, не растворимый в разбавленных кислотах. Этим условиям удовлетворяет только HF.

Найдем состав смеси CO_2 и HF. Пусть объемная доля CO_2 равна x, тогда

$$44x + 20(1 - x) = 28,$$

$$x = 0.333.$$

Состав смеси: 33.33% СО₂, 66.67% НF.

Газ X имеет молярную массу

$$M(X) = 33 \cdot 2 = 66 \ \Gamma/\text{моль},$$

и при гидролизе дает смесь CO₂ и HF в соотношении 1 : 2:

$$X + H_2O \rightarrow CO_2 + 2HF$$
.

Газ **X** – это COF_2 . Уравнения реакций:

$$COF_2 + H_2O \rightarrow CO_2 + 2HF,$$

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O,$$

$$2HF + Ca(OH)_2 \rightarrow CaF_2 \downarrow + 2H_2O,$$

$$CaCO_3 + 2HC1 \rightarrow CaCl_2 + CO_2 \uparrow + H_2O.$$

Ответ: **X** – COF₂, **Y** – CO₂, **Z** – HF; 33.33% CO₂ и 66.67% HF.