Олимпиада школьников «Покори Воробьёвы горы!» по химии Очный тур – 2012 год

ТОМСК Вариант 18

1. Рассчитайте массу одиннадцати молекул водорода.

Решение:

$$\overline{m = 11 \cdot \frac{M(H_2)}{N_A}} = 11 \cdot \frac{2}{6.02 \cdot 10^{23}} = 3.65 \cdot 10^{-23} \text{ r.}$$

Ответ: 3.65·10⁻²³ г.

2. Газовая смесь состоит из 25 об. % водорода, 20 об. % гелия и газа X. Средняя молярная масса смеси газов равна 10.1 г/моль. Предложите формулу газа X, удовлетворяющую условию задачи.

Решение:

$$M_{\rm cp} = \varphi_1 \cdot M_1 + \varphi_2 \cdot M_2 + \varphi_3 \cdot M_3 = 0.25 \cdot 2 + 0.20 \cdot 4 + 0.55 \cdot M_3 = 19.56$$
 г/моль, откуда $M_3 = 16$ г/моль. Газ — CH₄.

Ответ: СН4.

3. Смешали 20 мл раствора хлорида аммония (концентрация 0.1 моль/л) с 30 мл раствора хлорида бария (концентрация 0.25 моль/л) и 45 мл раствора хлорида железа (III) (концентрация 0.05 моль/л) и 400 мл воды. Определите молярную концентрацию ионов СГ в полученном растворе.

<u>Решение</u>:

$$C(\mathrm{Cl}^-) = \frac{V_1 \cdot C_1 + V_2 \cdot C_2 \cdot 2 + V_3 \cdot C_3 \cdot 3}{V_1 + V_2 + V_3 + 400} = \frac{20 \cdot 0.1 + 30 \cdot 0.25 \cdot 2 + 45 \cdot 0.05 \cdot 3}{20 + 30 + 45 + 400} = 0.048 \; \mathrm{моль/л}.$$

Ответ: 0.048 моль/л.

4. Смешали 4 моль вещества A с 2 моль вещества B и 1 моль вещества C. После установления равновесия A + B ≠ 2C в системе обнаружили 3 моль вещества C. Определите равновесный состав смеси (в мольных %), полученной при смешении по 3 моль веществ A, B и C при той же температуре.

Решение:

В первом случае:

$$A + B \rightleftarrows 2C$$

Исх. кол-ва: 4 2 1
Равн. кол-ва: 4- a 2- a 1+2 a

По условию v(C) = (1 + 2a) = 3, откуда a = 1.

Константа равновесия равна:
$$K = \frac{[C]^2}{[A][B]} = \frac{(1+2a)^2}{(4-a)\cdot(2-a)} = \frac{3^2}{3\cdot 1} = 3.$$

Во втором случае:

$$A + B \rightleftharpoons 2C$$

Исх. кол-ва: 3 3 3
Равн. кол-ва: 3- x 3- x 3+2 x

Константа равновесия равна:
$$K = \frac{[C]^2}{[A][B]} = \frac{(3+2x)^2}{(3-x)\cdot(3-x)} = 3$$
, откуда $x = 0.588$.

$$\varphi(A) = \frac{(3-x)}{9} = 26.8\%, \ \varphi(B) = \frac{(3-x)}{9} = 26.8\%, \ \varphi(C) = \frac{(3+2x)}{9} = 46.4\%.$$

Onseem: $\varphi(A) = 26.8\%, \ \varphi(B) = 26.8\%, \ \varphi(C) = 46.4\%.$

5. Напишите уравнения химических реакций, соответствующие следующей схеме превращений: $FeBr_2 \to X_1 \to X_2 \to FeBr_2$. Рассмотрите два случая: 1) все реакции – обменные; 2) все реакции – окислительно-восстановительные.

Решение:

Обменные:

FeBr₂ + 2 KOH = Fe(OH)₂ \downarrow + 2 KBr. 2 Fe(OH)₂ + H₂SO₄ = FeSO₄ + 2 H₂O.

 $FeSO_4 + BaBr_2 = FeBr_2 + BaSO_4 \downarrow$.

Окислительно-восстановительные:

 $2 \text{ Fe} + 3 \text{ Br}_2 = 2 \text{ FeBr}_3.$

 $2 \operatorname{FeBr}_3 + \operatorname{Fe} = 3 \operatorname{FeBr}_2$.

6. Неизвестное вещество X состава $C_4H_4O_4$ устойчиво при нагревании, обесцвечивает бромную воду и холодный раствор перманганата калия. Реакция X с насыщенным раствором гидрокарбоната натрия сопровождается выделением газа. Установите строение X и напишите уравнения упомянутых реакций.

<u>Решение</u>:

 $HOOC-CH=CH-COOH + Br_2 \rightarrow HOOC-CHBr-CHBr-COOH.$

 $3 \text{ HOOC-CH=CH-COOH} + 2 \text{ KMnO}_4 + 2 \text{ H}_2\text{O} \rightarrow$

→ KOOC–CH(OH)–CH(OH)–COOK + 2 HOOC–CH(OH)–CH(OH)–COOH + 2 MnO₂ \downarrow . HOOC–CH=CH–COOH + 2 NaHCO₃ → NaOOC–CH=CH–COONa + 2CO₂↑ + 2H₂O.

Транс-этилендикарбоновая кислота (фумаровая) устойчива при нагревании.

7. Смесь сульфидов хрома (II) и (III) общей массой 3.68 г. растворили в избытке соляной кислоты. К полученному раствору добавили избыток щёлочи и получили осадок, массой 1.72 г. Через фильтрат пропустили углекислый газ до прекращения выделения осадка. Найдите массу второго осадка. Напишите уравнения реакций (все опыты проводили в инертной атмосфере).

Решение:

При растворении сульфидов хрома (II) и (III) в соляной кислоте образуются соответствующие хлориды:

$$CrS + 2 HCl = CrCl_2 + H_2S^{\uparrow},$$

 $Cr_2S_3 + 6 HCl = 2 CrCl_3 + 3 H_2S^{\uparrow}.$

При действии избытка щёлочи протекают следующие реакции:

$$CrCl_2 + 2 KOH = Cr(OH)_2 \downarrow + 2 KCl$$
,
 $CrCl_3 + 4 KOH = K[Cr(OH)_4] + 3 KCl$.

Таким образом, первый осадок — это $Cr(OH)_2$, а в фильтрате содержатся KCl и $K[Cr(OH)_4]$.

При пропускании CO_2 через фильтрат образуется второй осадок – $Cr(OH)_3$:

$$K[Cr(OH)_4] + CO_2 = Cr(OH)_3 \downarrow + KHCO_3.$$

Количество CrS равно ν (CrS) = ν (Cr(OH)₂) = 1.72 / 86 = 0.02 моль.

Масса $m(Cr_2S_3) = m(исх. смеси) - m(CrS) = 3.68 - 0.02 \cdot 84 = 2.0 г, а его количество <math>v(Cr_2S_3) = 2.0/200 = 0.01$ моль.

 $\nu(Cr(OH)_3) = 2 \cdot \nu(Cr_2S_3) = 0.02$ моль.

Масса второго осадка равна: $m(Cr(OH)_3) = 0.02 \cdot 103 = 2.06$ г.

Ответ: 2.06 г Cr(OH)₃.

1. Рассчитайте массу пятнадцати молекул этилена.

$$m = 15 \cdot \frac{M(C_2H_4)}{N_A} = 15 \cdot \frac{28}{6.02 \cdot 10^{23}} = 6.98 \cdot 10^{-22} \text{ r.}$$

Ответ: 6.98·10⁻²² г.

2. Газовая смесь состоит из 10 об. % азота, 55 об. % ацетилена и газа Х. Средняя молярная масса смеси газов равна 32.5 г/моль. Предложите формулу газа X, удовлетворяющую условию задачи.

$$M_{\rm cp} = \varphi_1 \cdot M_1 + \varphi_2 \cdot M_2 + \varphi_3 \cdot M_3 = 0.10 \cdot 28 + 0.55 \cdot 26 + 0.35 \cdot M_3 = 38.8$$
 г/моль, откуда $M_3 = 44$ г/моль. Газ – CO₂, N₂O или C₃H₈.
Ответ: CO₂, N₂O или C₃H₈.

3. К смеси 35 мл раствора CuSO₄ с концентрацией 0.1 моль/л, 75 мл раствора Al₂(SO₄)₃ с концентрацией 0.15 моль/л и 100 мл раствора Na₂SO₄ с концентрацией 0.2 моль/л добавили воды до объема 500 мл. Определите молярную концентрацию ионов SO_4^{2-} в полученном растворе.

Решение:

$$C(\mathrm{SO_4^{2-}}) = \frac{V_1 \cdot C_1 + 3 \cdot V_2 \cdot C_2 + V_3 \cdot C_3}{V} = \frac{35 \cdot 0.1 + 3 \cdot 75 \cdot 0.15 + 100 \cdot 0.2}{500} = 0.1145 \ \mathrm{моль/л}.$$

Ответ: 0.1145 моль/л.

4. Энергия связи O-Cl в молекуле Cl₂O составляет 209 кДж/моль. Рассчитайте теплоту образования оксида хлора (1) из простых веществ при стандартных условиях, если энергии связи в молекулах O₂ и Cl₂ составляют, соответственно 498 и 242 кДж/моль.

Решение:

Запишем данные задачи в виде термохимических уравнений:

(1)
$$Cl_2O = 2Cl + O + Q_1$$
, $Q_1 = 2 \cdot (-209)$ кДж,

$$Q_1 = 2 \cdot (-209)$$
 кДж

(2)
$$O_2 = 2 O + Q_2$$
,

$$Q_2 = -498$$
 кДж,

(3)
$$Cl_2 = 2 Cl + Q_3$$

$$Q_3 = -242 \text{ кДж.}$$

Необходимо найти теплоту реакции

(4)
$$Cl_2 + \frac{1}{2} O_2 = Cl_2O + Q_4$$
.

Реакцию (4) можно представить как комбинацию трёх первых реакций, а именно:

$$(4) = (3) + \frac{1}{2}(2) - (1).$$

Соответственно, теплота реакции (4) равна

$$Q_4 = Q_3 + \frac{1}{2}Q_2 - Q_1 = -242 + \frac{1}{2}(-498) - 2(-209) = -73$$
 кДж/моль.

Ответ: -73 кДж/моль.

5. Напишите уравнения химических реакций, соответствующие следующей схеме превращений: $Al(NO_3)_3 \rightarrow X_1 \rightarrow X_2 \rightarrow Al(NO_3)_3$. Рассмотрите два случая: 1) все реакции – обменные; 2) все реакции – окислительно-восстановительные.

Решение:

Обменные:

$$Al(NO_3)_3 + 3KOH = Al(OH)_3 \downarrow + 3KNO_3.$$

$$2 \text{ Al(OH)}_3 \xrightarrow{t^\circ} \text{Al}_2\text{O}_3 + 3 \text{ H}_2\text{O}.$$

$$Al_2O_3 + 6HNO_3 = 2Al(NO_3)_3 + 3H_2O$$
.

Окислительно-восстановительные:

$$\begin{array}{l} 4~\mathrm{Al(NO_3)_3} \xrightarrow{t^o} 2~\mathrm{Al_2O_3} + 12~\mathrm{NO_2} + 3~\mathrm{O_2}. \\ 2~\mathrm{Al_2O_3} \xrightarrow{_{\mathrm{ЭЛЕКТРОЛИЗ}}\mathrm{pachiaba}} 4~\mathrm{Al} + 3~\mathrm{O_2}. \\ 8~\mathrm{Al} + 3~\mathrm{O}~\mathrm{HNO_3}~_{\mathrm{pa36}} = 8~\mathrm{Al(NO_3)_3} + 3~\mathrm{NH_4NO_3} + 9~\mathrm{H_2O}. \end{array}$$

6. Неизвестное вещество X состава C_3H_4O обесцвечивает бромную воду и холодный раствор перманганата калия, дает реакцию серебряного зеркала. Установите строение X и напишите уравнения упомянутых реакций.

CH₂=CH–CHO + Br₂ +H₂O
$$\rightarrow$$
 CHBr–CHBr–COOH + HBr.
CH₂=CH–CHO + 2[Ag(NH₃)₂]OH \rightarrow CH₂=CH–COONH₄ + 2 Ag \downarrow + 3 NH₃ + H₂O.
3 CH₂=CH–CHO + 4 KMnO₄ + 5 H₂O \rightarrow 3 CH₂OH–CHOH–COOK + 4 MnO₂ \downarrow + KOH.

7. Сульфид металла Me₂S массой 34.4 г (металл проявляет в своих соединениях степени окисления +1 и +3) поместили в замкнутый реактор, содержащий 0.6 моль кислорода, и подожгли. После окончания процесса давление газов при неизменной температуре уменьшилось в 2 раза по сравнению с начальным. Установите формулу исходного сульфида. Образовавшийся в результате сгорания газ пропущен через избыток тетрагидроксохромита натрия. Рассчитайте массу выпавшего при этом осадка. Решение:

При сгорании Me_2S образуется оксид Me_2O_3 :

$$2 \text{ Me}_2\text{S} + 5 \text{ O}_2 = 2 \text{ Me}_2\text{O}_3 + 2 \text{ SO}_2$$

 $x = 2.5x \qquad x \qquad x$

Пусть $v(Me_2S) = x$ моль, тогда после реакции в газовой смеси останется (0.6 - 2.5x) моль O_2 и образуется x моль SO_2 . Давление уменьшилось в 2 раза за счёт уменьшения количества газов:

$$\frac{p_1}{p_2} = 2 = \frac{0.6}{0.6 - 2.5x + x},$$

откуда x = 0.2. Молярная масса сульфида $M(Me_2S) = 34.4/0.2 = 172$ г/моль.

Тогда молярная масса металла M(Me) = (172 - 32)/2 = 70 г/моль. Это галлий, Ga.

При пропускании 0.2 моль SO_2 через избыток раствора тетрагидроксохромита натрия $SO_2 + 2 \text{Na}[\text{Cr}(OH)_4] = 2 \text{Cr}(OH)_3 \downarrow + \text{Na}_2 SO_3$

образовалось 0.4 моль $Cr(OH)_3$. Масса осадка равна $m(Cr(OH)_3) = 0.4 \cdot 103 = 41.2$ г. *Ответ*: Ga_2S , 41.2 г $Cr(OH)_3$.