9 класс

1. Минимальный путь

Автомобиль, едущий со скоростью υ_0 , в некоторый момент начинает движение с таким постоянным ускорением, что за время τ пройденный им путь s оказывается минимальным. Определите этот путь s.

Возможное решение

Слободянин В.

Чтобы путь, пройденный за время τ , был минимальным, автомобиль должен начать тормозить. Пусть t_1 — время, прошедшее с момента начала торможения до момента остановки автомобиля. (Вместо t_1 в качестве параметра задачи можно ввести конечную скорость v_1 автомобиля). После этого момента автомобиль начнёт разгоняться в обратном направлении. Пройденный путь

$$s = \frac{\upsilon_0 t_1}{2} + \frac{\upsilon_0}{t_1} \frac{(\tau - t_1)^2}{2} = \frac{\upsilon_0}{2} \left(t_1 + \frac{(\tau - t_1)^2}{t_1} \right).$$

Преобразуем это выражение к виду

$$\frac{2st_1}{v_0} = t_1^2 + (\tau - t_1)^2.$$

Это квадратное уравнение относительно переменной t_1 . Приведём его к виду

$$t_1^2 - \left(\tau + \frac{s}{v_0}\right)t_1 + \frac{\tau^2}{2} = 0.$$

Дискриминант этого уравнения равен

$$\left(\tau + \frac{s}{\upsilon_0}\right)^2 - \left(\sqrt{2}\tau\right)^2 = \left(\tau + \frac{s}{\upsilon_0} - \sqrt{2}\tau\right)\left(\tau + \frac{s}{\upsilon_0} + \sqrt{2}\tau\right).$$

Из анализа первого сомножителя находим, что путь, пройденный за время τ , минимален при условии

$$s = \left(\sqrt{2} - 1\right)\tau v_0.$$

Критерии оценивания

- 1. В результате анализа движения, например, графика $\upsilon(t)$, указано на то, что скорость в течение времени τ должна сменить знак **2 балла**
- 2. Записано выражение для пройденного пути (через ускорение, или время t_1 движения автомобиля до остановки, или конечную скорость υ_1) **4 балла**

2 балла за выражение для пути до остановки и 2 балла - за оставшуюся часть пути

3. В результате решения квадратного уравнения получено выражение для времени t_1 движения до момента остановки автомобиля или для конечной скорости υ_1 автомобиля

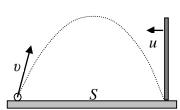
3 балла

4. Получен окончательный ответ

1 балл

2. Отражение в полете

В баллистической лаборатории при проведении эксперимента по изучению упругого отражения от движущихся препятствий производился выстрел маленьким шариком из небольшой катапульты, установленной на горизонтальной поверхности. Одновременно из точки, в которую по расчетам должен был



упасть шарик, с постоянной скоростью начинала движение навстречу массивная вертикальная стенка (см. рисунок). После упругого отражения от стенки, шарик падал на некотором расстоянии от катапульты. Затем эксперимент повторяли, изменяя **только** скорость движения стенки. Оказалось, что в двух экспериментах удар шарика о стенку произошел на одной и той же высоте h. Определите эту высоту, если известно, что время полета шарика до отражения в первом случае составило $t_1=1$ с, а во втором $t_2=2$ с. На какую максимальную высоту H поднимался шарик за весь полет? Чему равна начальная скорость шарика v, если расстояние между местами его падения на горизонтальную поверхность в первом и втором экспериментах составило L=9 м? Определите скорости равномерного движения стенки u_1 и u_2 в этих экспериментах и начальное расстояние S между стенкой и катапультой. Считайте g=10 м/с².

Примечание. В системе отсчёта, связанной со стенкой, модули скорости шарика до и после столкновения одинаковы, а угол отражения шарика равен углу падения.

Возможное решение

Замятнин М.

Вертикальное перемещение шарика описывается уравнением $h=\upsilon_{_{\rm B}}t-\frac{gt^2}{2}$, которое можно переписать в виде: $t^2-2\frac{\upsilon_{_{\rm B}}}{g}t+\frac{2h}{g}=0$ (здесь $\upsilon_{_{\rm B}}$ – проекция начальной скорости на вертикальную ось). По теореме Виета время всего полета $t_1+t_2=\frac{2\upsilon_{_{\rm B}}}{g}$ и $t_1t_2=\frac{2h}{g}$, откуда высота, на которой произошел отскок $h=\frac{gt_1t_2}{2}=10$ м и $\upsilon_{_{\rm B}}=\frac{g(t_1+t_2)}{2}=15$ м/с. Заметим, что при отражении от стенки вертикальная составляющая скорости шарика не изменяется, поэтому максимальная высота полета определяется лишь начальной вертикальной скоростью $\upsilon_{_{\rm B}}$ и равна $H=\frac{\upsilon_{_{\rm B}}^2}{2a}=\frac{g(t_1+t_2)^2}{2}=11,25$ м.

Горизонтальные перемещения шарика и стенки до момента столкновения связаны следующими соотношениями: $\upsilon_{r}t_{2}=u_{1}t_{1}$ и $\upsilon_{r}t_{1}=u_{2}t_{2}$, так как стенка проходит то расстояние, которое «не успевает» пролететь до падения шарик. Откуда $u_{1}=\upsilon_{r}t_{2}/t_{1}$ и $u_{2}=\upsilon_{r}t_{1}/t_{2}$.

В момент столкновения шарика со стенкой горизонтальная скорость шарика изменяет свое направление на противоположное и увеличивается на удвоенную скорость стенки (это можно показать, рассмотрев упругий отскок из системы отсчета, в которой стенка покоится). Вертикальная скорость шарика при отражении не изменяется, и дальнейший полет до падения длится столько же времени, как и в отсутствии удара. Тогда проекции перемещения шарика от катапульты до мест падения могут быть найдены по формулам:

$$L_1 = \upsilon_{r}t_1 - (\upsilon_{r} + 2u_1)t_2 = \upsilon_{r}\left(t_1 - t_2 - 2\frac{t_2^2}{t_1}\right) \text{ if } L_2 = \upsilon_{r}t_2 - (\upsilon_{r} + 2u_2)t_1 = \upsilon_{r}\left(t_2 - t_1 - 2\frac{t_1^2}{t_2}\right).$$

Здесь за положительное направление принято направление от катапульты к стенке.

Расстояние между точками падения равно $L = L_2 - L_1 = 2\upsilon_{\scriptscriptstyle \Gamma} \left(t_2 - t_1 + \frac{t_2^2}{t_1} - \frac{t_1^2}{t_2}\right)$, откуда

$$u_{\Gamma} = \frac{L}{2} \left(\frac{t_1 t_2}{\left(t_1 + t_2\right)^2 \left(t_2 - t_1\right)} \right) = 1 \text{ m/c}.$$

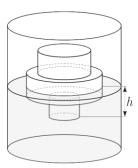
Окончательно $\upsilon = \sqrt{\upsilon_{_\Gamma}^2 + \upsilon_{_B}^2} \approx 15\,$ м/с, горизонтальная дальность полета шарика (начальное расстояние между катапультой и стенкой) $S = \upsilon_{_\Gamma}(t_1 + t_2) = 3\,$ м, скорости стенки $u_1 = 2\,$ м/с и $u_2 = 0.5\,$ м/с.

Критерии оценивания

1.	Найдена высота, на которой произошло отражение (в т.ч. число 0,5 балла)	1 балл
2.	Найдена максимальная высота полета (в т.ч. число 0,5 балла)	1 балл
3.	Связь между горизонтальной скоростью шарика и скоростями стенки	1 балл
4.	Учтено сохранение вертикальной скорости шарика до и после отражения	1 балл
5.	Определена горизонтальная скорость шарика после отражения	1 балл
6.	Найдены расстояния от катапульты до мест падения шарика	1 балл
7.	Найдено начальное расстояние от катапульты до стенки	1 балл
8.	Найдена начальная скорость шарика	1 балл
9.	Получены численные значения v , S , u_1 , u_2 (по 0,5 балла)	2 балла

3. Трехцилиндровый

Тело, склеенное из трех соосных цилиндров разного поперечного сечения и разной высоты, погружают в некоторую жидкость и снимают зависимость силы Архимеда F, действующей на тело, от глубины h его погружения. Известно, что площадь сечения самого узкого (не факт, что самого нижнего) цилиндра $S=10~{\rm cm}^2$. Постройте график зависимости F(h) и с его помощью определите высоту каждого из цилиндров, площади сечения двух других цилиндров и



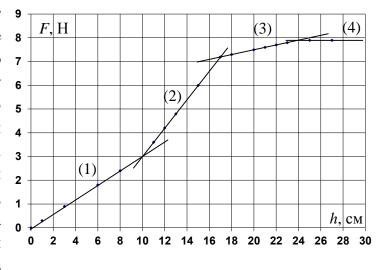
плотность жидкости. В процессе эксперимента ось вращения цилиндров оставалась вертикальной, $g=10 \text{ м/c}^2$.

h,	СМ	0	1	3	6	8	11	12	13	15	17	18	20	21	22	23	25	27
F_{a}	, Н	0	0,3	0,9	1,8	2,4	3,6	4,2	4,8	6,0	7,2	7,3	7,5	7,6	7,7	7,8	7,9	7,9

Возможное решение

График зависимости F(h) имеет 9 излома, которые соответствуют изменению 7 площади сечения тела и полному 6 его погружению. Заметим, что 5 находится 4 положение изломов путем экстраполяции линейных зависимостей до их пересечения (в точках 10 см, 17 см и 24 см), поэтому опираться только табличные данные при определении высот цилиндров

Гордеев 3.



нельзя. В области с h < 24 см самый пологий участок графика третий, следовательно, на нем наименьшая площадь поперечного сечения S. Угловой коэффициент наклона первого участка в три раза больше, следовательно, его сечение 3S = 30 см². На втором участке угловой коэффициент наклона больше в 6 раз, а его площадь сечения 6S = 60 см². Длины цилиндров 10 см, 7 см и 7 см соответственно. Плотность жидкости можно h, см

определить, например, по третьему участку: $\rho = \frac{\Delta F}{Sg\Delta h} = 1000 \text{ кг/м}^3$.

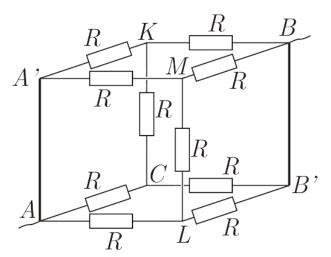
Критерии оценивания

•	Построен график зависимости $F(h)$		1 балл		
•	На графике выделено 4 участка		0,5 балла		
•	Экстраполяция участков до пересечения		0,5 балла		
•	Определение длин цилиндров – по 1 баллу за к	саждое	3 балла		
•	Если отклонение менее 1 см, то по 1 баллу				
	Если отклонение от 1 см до 2 см, то 0,5 балла з				
•	Определение сечений (по 2 балла за каждое)		4 балла		
•	Если отклонение менее 10%,	2 балла за каждое			
•	Если отклонение от 10% до 20%,	1 балл за каждое			
•	Если отклонение больше 20%,	0 баллов			
•	Определена плотность жидкости (если отклонение менее 10%)				
	иначе -0 баллов.				

4. Два в кубе

Куб собран из одинаковых резисторов сопротивлением R. Два резистора заменили на идеальные перемычки, как указано на рисунке.

- Найдите общее сопротивление получившейся системы между контактами A и B.
- Какие резисторы из оставшихся можно убрать, чтобы это не изменило общее сопротивление системы?



- Если известно, что через большинство резисторов в цепи течет ток I = 2 A, вычислите силу тока в проводе, подсоединенном к узлу A (или B)?
- Вычислите силу тока, текущего через идеальную перемычку АА`?

Возможное решение

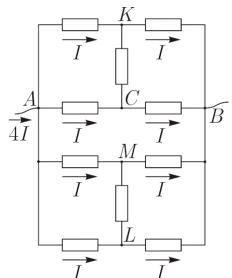
Изобразим эквивалентную схему и расставим токи в ветвях с учетом закона сохранения заряда и закона Ома (сила токов обратно пропорциональна сопротивлениям параллельных ветвей).

Теперь легко дать ответы на вопросы задачи. В силу симметрии схемы, токи через резисторы в ветвях КС и МL не идут. Следовательно, эти резисторы можно убрать, и это не приведет к перераспределению токов в цепи и изменению общего сопротивления, которое равно

$$R_{\rm o} = \frac{U_{\rm o}}{I_{\rm o}} = \frac{2IR}{4I} = \frac{1}{2}R$$
.

По условию I = 2 А. Следовательно, сила тока, входящего

в узел A, равна 4I = 8A. Сила тока через идеальную перемычку AA` равна сумме токов через резисторы в ветвях A`K и A`M: 2I = 4 A.

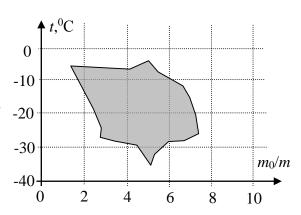


Иванов М.

Критерии оценивания

•	Правильная эквивалентная схема	2 балла
•	Обосновано отсутствие токов через два резистора	2 балла
•	Найдено общее сопротивление	2 балла
•	Определен общий ток	2 балла
•	Найден ток через перемычку	2 балла

5. Ледяное пятно



льда $\lambda = 340$ кДж/кг, удельная теплоемкость воды c = 4~200 Дж/(кг $^{.0}$ С), удельная теплоемкость льда $c_1 = 2~100$ Дж/(кг $^{.0}$ С). Масса льда m на диаграмме приведена в условных единицах, показывающих, во сколько раз масса льда меньше, чем $m_0 = 1$ кг. Теплоемкостью калориметра и потерями тепла пренебречь.

Возможное решение

Замятнин М.

Запишем уравнение теплового баланса для конденсирующегося (превращающегося в воду) пара, остывающей и кристаллизующейся воды и нагревающегося льда: $m_{_{\Pi}}(L+c(t_{_{\text{кип}}}-t_{_{0}})+\lambda)=mc_{_{1}}(t_{_{0}}-t)\ , \ \text{откуда}\ m_{_{\Pi}}=\frac{mc_{_{1}}(t_{_{0}}-t)}{L+c(t_{_{\text{куп}}}-t_{_{0}})+\lambda}\ , \ \text{или с учетом того, что}$

$$t_0 = 0^0$$
С, получим: $m_{_{\rm II}} = \frac{-mtc_{_1}}{L + ct_{_{\rm NMI}} + \lambda}$ (здесь и далее учтено, что $t < 0$). Максимальная масса

пара потребуется при максимальном по модулю значении произведения mt. Одинаковым о значениям произведения mt соответствуют точки, лежащие на прямых, проведенных из начала координат. Действительно, для этих -20 прямых выполняется условие $t=\alpha\frac{m_0}{m}$, или -30

 $mt = \alpha m_0 = const$, где α - угловой коэффициент наклона прямой. Чем больше угол наклона

прямой, тем больше модуль произведения mt. Из графика видно, что для прямой проведенной из начала координат, касающейся области возможных параметров льда и имеющей максимальный угол наклона, значение коэффициента $\alpha = -10^{0}$ С. Следовательно, максимальная масса пара потребуется при значении произведения mt = -10 кг $^{-0}$ С. С учетом этого, получим $m_{\rm II} \approx 6.9$ г.

Критерии оценивания

1.	Составлено уравнение теплового баланса	2 балла
2.	Правильно указано, при каком условии количество пара максимально	2 балла
3.	Предложен способ нахождения максимального значения модуля mt	2 балла
4.	Правильно проведена касательная к области допустимых параметров льд	а 1 ба лл
5.	Найдено значение <i>mt</i>	1 балл
6.	Определена максимальная масса пара	2 балла

В п.6 имеет смысл ввести широкие 10% (**1 балл**) и узкие 5% (**2 балла**) «ворота», так как при решении обрабатывается графическая информация. Но, за ответы, попавшие в эти ворота при неверных исходных предположениях (п.п. 3-5), баллы ставиться не должны!